

COURSE STRUCTURE

(Choice Based Credit System)

B. Sc. LIFE SCIENCES (INDUSTRIAL BIOTECHNOLOGY, MICROBIOLOGY, BIOCHEMISTRY)

Effective from Academic Year: 2023-2024

	Faculty Name:	SCIENCE			
NAD/	Programme Name:	B. Sc. LIFE SCIENCES (In	dustrial Biotechnology/Microbiology/Biochemistry)		
	Semester:	Ι		Academic Batch:	2023-24

Course Group	Board of Studies / Faculty	Studies / FacultyCourse Code	Course Name Cr		Τe	eachin	g Sch	eme	Evalu	Ssessment/ Evaluation Type		ernal am ation rs.)	INT(T) Max./ Passing	EXT(T) Max./	Max./		Grand Total Max./ Passing
	Ownership				T P	Р	Tu	Cont. Hrs	Т	Р	Т	Р	i assing	1 assing	i assiiig	1 assing	Passing
Discipline Specific Course-1	Biological Sciences		Introduction to Fermentation Technology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Biological Sciences		General Microbiology	4	3	1		5	~	\checkmark	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Molecules of life	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Chemical Sciences		Chemistry-I	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Humanities		English	2	2			2	~		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Microbial Techniques	2		2		2		\checkmark		2			50/18	50/17	100/35
Value Addition	Arts		National Service Scheme (NSS)	2		2		2		~		2			50/18	50/17	100/35
Course			National Cadet Corps (NCC)	2		2		2		~		2			50/18	50/17	100/35
(any one)			Sports	2		2		2		~		2			50/18	50/17	100/35
				22													

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

		culty Name		ology	/Mic	crobi	olog	y/Biod	chemis	stry)							
Acgle Character May Handel (Essal 1945)		Semeste	r: II								A	cade	mic Batc	h:	2023-2	4	
Course Group	Board of Studies / Course Faculty Code		Course Name	Cr	Te	eachin	ıg Sch	eme	Assess Evalu Ty	Ex	ernal am ation rs.)	INT(T) Max./ Passing	EXT(T) Max./	Max./	EXT(P) Max./ Passing	Grand Total Max./	
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	1 assing	1 assing	1 assing	1 assing	Passing
Discipline Specific Course-1	Biological Sciences		Introduction to Bioprocess Technology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Biological Sciences		Microbial Physiology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Enzymology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Chemical Sciences		Chemistry-II	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Interdiscipl inary		Environmental Studies	2	2			2	~		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Organic Farming	2	2			2	~		2		50/18	50/17			100/35
Value Addition Course	FCML		Liberal Arts	2		2		2		~		2			50/18	50/17	100/35
				22													

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

DR. BASUDEB BAKSHI

++++

Faculty Name:	SCIENCE	
Programme Name:	B. Sc. LIFE SCIENCES(Industrial Biotechnology/Microbiology/Biochemistry)	
Semester:	III	Academic Batch:

Course Group	Faculty Code	Course Code	(Ourse Name		Cr				ment/ ation pe	External Exam Duration (Hrs.)		INT(T) Max./	Max./	Max./	EXT(P) Max./ Passing	Grand Total Max./	
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	Passing	Passing	Passing	Passing
Discipline Specific Course-1	Biological Sciences		Bio separation Technology	4	3	1		5	\checkmark	\checkmark	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Biological Sciences		Microbial Ecology & Diversity	4	3	1		5	✓	✓	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Techniques in Biochemistry	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		DNA Structure Function and Repair	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Biological Sciences		Environmental Pollution	2	2			2	~		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Bioinstrumentation-I	2	2			2	~		2		50/18	50/17			100/35
Value Addition Course	FCML		Indian Constitution	2	2			2	~		2		50/18	50/17			100/35
				22													

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

DR. BASUDEB BAKSHI

2023-24

CVM UNIVERSITY
Acgle: Charutae Midya Mandal (Esec. 1945)

Faculty Name: SCIENCE

IV

B. Sc. LIFE SCIENCES(Industrial Biotechnology/Microbiology/Biochemistry)

Semester:

Programme Name:

Academic Batch:

2023-24

Course Group	- Faculty Code		Cr	Тє	achin	g Sch	eme	Assessment/ Evaluation Type		on Durati		INT(T) Max./ Passing	EXT(T) Max./ Passing	Max./	EXT(P) Max./ Passing	Grand Total Max./	
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	1 assing	1 assing	1 0331115	1 assing	Passing
Discipline Specific Course- 1	Biological Sciences		Microbial Biotechnology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 2	Biological Sciences		Microbial Genetics	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 3	Biological Sciences		Metabolism of carbohydrates and lipids	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		Gene Expression and Regulation	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Biological Sciences		Fundamentals of Biostatistics	2	2			2	~		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Bioinstrumentation-II	2	2			2	~		2		50/18	50/17			100/35
Value Addition Course	Interdiscipl inary		Wildlife Conservation	2	2			2	\checkmark		2		50/18	50/17			100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

	Faculty Name:	SCIENCE		
VIL	Programme Name:	B. Sc. LIFE SCIENCES(Industrial Biotechnology/Microbiology/Biochemistry)		
Reger CONTRACTOR Argie: Charters 'H 6yo Mandel (Exet 1945)	Semester:	V	Academic Batch:	2023-24

Course Group	Board of Studies / Faculty	Course Code	Course Name	Cr	Τe	eachir	ıg Sch	eme		ment/ ation pe	External Exam Duration (Hrs.)		INT(T) Max./	Max./	INT(P) Max./ Passing	Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	Passing	Passing	Passing	Passing
Discipline Specific Course- 1	Biological Sciences		Microbial Secondary Metabolites Production	4	3	1		5	✓	✓	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 2	Biological Sciences		Environmental Microbiology	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 3	Biological Sciences		Metabolism of amino acids and nucleotides	4	3	1		5	√	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Elective	Biological Sciences		Documentation, validation and cGMP	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		Genetic Engineering	4	3	1		5	\checkmark	~	2	2	50/18	50/17	25/9	25/9	150/53
Skill Enhancement Course	Biological Sciences		Introduction to Bioinformatics	2	2			2	✓		2		50/18	50/17			100/35
# T. The serve D				22													

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

CVM
CALLY A TRADULT T

Faculty Name:	SCIENCE
Programme Name:	B. Sc. LIF

VI

B. Sc. LIFE SCIENCES(Industrial Biotechnology/Microbiology/Biochemistry)

Semester:

Academic Batch:

2023-24

Course Group	Board of Studies / FacultyCourse CodeCourse Name		Course Name	Cr	Τe	achin	ıg Sch	eme	Assess Evalu Ty	,	Exte Exa Dura (Hi	am ation	INT(T) Max./ Passing	EXT(T) Max./ Passing	Max./	EXT(P) Max./	Grand Total Max./
	p				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	1 assing	i assiiig	i assing	i assing	Passing
Discipline Specific Course-1	Biological Sciences		Waste water Treatment Technologies	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Biological Sciences		Biopharmaceuticals and Bio therapeutics	4	3	1		5	✓	✓	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Membrane Biology and Bioenergetics	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Elective	Biological Sciences		Environmental Impact Assessment	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		Basic Immunology	4	3	1		5	✓	✓	2	2	50/18	50/17	25/9	25/9	150/53
Skill Enhancement Course	Biological Sciences		Entrepreneurship Development	2	2			2	~		2		50/18	50/17			100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

UNIVERSITY	

Faculty Name:	SCIENCE

VII

B. Sc. LIFE SCIENCES(HONOURS/ HONOURS with Research)(Industrial Biotechnology)

Semester:

Programme Name:

Academic Batch:

2023-24

Course Group	Board of Studies / Faculty	ies / Course Course Name		idies / Course Name		lies / Course Name		es / Course Name		udies / Course Name		Studies / Course Name		Cr	Τe	eachin	g Sch	eme		ment/ ation pe	Exa Dura	ernal am ation rs.)	INT(T) Max./	Max./	INT(P) Max./ Passing	Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	1 assing	1 assing	1 assing	1 assing	Passing										
Discipline Specific Course-1	Biological Sciences		Industrial Waste Management	4	3		1	4	~		2		50/18	50/17			100/35										
Discipline Specific Elective-1	Biological Sciences		Food and Dairy Technology	4	3		1	4	~		2		50/18	50/17			100/35										
Discipline Specific Elective-2	Biological Sciences		Enzyme Technology	4	3		1	4	√		2		50/18	50/17			100/35										
Discipline Specific Elective-3	Biological Sciences		Biology of Omics	4	3		1	4	~		2		50/18	50/17			100/35										
	Biological Sciences		Dissertation/ Practicals	6		6				~							300/105										
				22																							

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

	Faculty Name:	SCIENCE		
VAP/	Programme Name:	B. Sc. LIFE SCIENCES (HONOURS/ HONOURS with Research) (Industrial Biotechno	ology)	
Agene CVINICERSITY Age: Charles Wey Mandel (East 1945)	Semester:	VIII Aca	ademic Batch:	2023-24
Acgle: Charunar VI dya Mandal (Eccl. 1943)				

Course Group	Board of Studies / Faculty	Course Code	Course Name Course Name		Τe	achin	g Sch			ment/ ation pe	Exte Exa Dura (Hi	am ation	INT(T) Max./ Passing	Max./	INT(P) Max./	Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	i assing	1 assing	i assiiig	1 assing	Passing
Discipline Specific Course-1	Biological Sciences		Seminar and Project Proposal	4		4		8		~		2					100/35
Discipline Specific Elective-1	Biological Sciences		Bio fertilizers and Biopesticides	4	3		1	4	✓		2		50/18	50/17			100/35
Discipline Specific Elective-2	Biological Sciences		Biofuels and Biopolymers	4	3		1	4	✓		2		50/18	50/17			100/35
Discipline Specific Elective-3	Biological Sciences		Biosafety, Bioethics and IPR	4	3		1	4	✓		2		50/18	50/17			100/35
	Biological Sciences		Dissertation/ Practicals	6		6				~							300/105
				22													

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

Effective from Academic Batch: 2023-24

Programme:	B.Sc. LIFE SCIENCES (HONOURS)
Semester:	I
Course Code:	To be Given by University
Course Title:	Introduction to Fermentation Technology
Course Group:	Discipline Specific Course – 1

Course Objectives:

The objectives of this course are:

- a). To impart knowledge about fermentation processes and its relevant aspects.
- b). The course will teach isolation, screening and strain improvement strategies, preservation methods, sterilization of media and air.
- c). It will be useful to understand various bioreactors and their applications.
- d). This course will enable the students to understand the concept and importance in fermentation process.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)			
Locturo	Tutorial Dreatical Cre			ecture Tutorial Practical Cred			The	eory	Prac	ctical	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total			
3		2	4	50/18	50/17	25/09	25/09	150/53			

Detailed Syllabus:

Sr.	Contents	Hours
1	Isolation, Screening and Preservation of Industrially important	12
	microorganism	
	•Isolation of industrially important microorganism and their characteristics	
	• Screening of industrially important microorganisms (Primary and secondary	
	screening and their significance)	
	• Preservation and maintenance of Industrially important microorganisms	

Page 1 of 18

2	Media for industrial fermentations and Sterilization	11
	•Ideal characteristics of fermentation medium.	
	•Raw materials of fermentation medium (carbon source, nitrogen source,	
	minerals, growth factors, buffers, precursors, antifoam and water).	
	•Sterilization of medium: The design of batch and continuous sterilization	
	process.	
	• Sterilization of air (Mechanism of filtration, introduction to absolute and	
	depth filters)	
3	Fermenter Design, and KLa determination	11
	•Basic functions of a fermenter its aseptic operations and containment.	
	•Body construction	
	•Aeration and Agitation (impellers, baffles and sparger)	
	•Sampling and measurement of process variables (Methods of measurement,	
	Types of measurement devices, control) like temperature, pH, dissolved	
	oxygen, pressure and foam.	
	•Introduction to mass transfer of oxygen	
	Methods to determine KLa	
4	Fermentation types and Fermentation processes	11
	Surface, solid state and submerged fermentation	
	Batch, fed-batch and continuous fermentation.	
	• Penicillin fermentation by <i>Penicillium chrysogenum</i> .	
	• Amylase production by submerged and solid state fermentation.	
L		

List of Practicals / Tutorials:

1	Preparation of media (Nutrient broth, PDA) in plates and slant.	
2	Isolation and Screening of organic acid and enzyme producing microorganisms	
	from soil.	
3	Preservation of culture in slants, glycerol stock and wax.	30
4	Inoculum preparation of spores and spores counting by Haemocytometer.	
5	Estimation of penicillin from fermented broth using UV-VIS spectrophotometer.	
6	Demonstration of lab scale fermenter.	
6	Demonstration of lab scale fermenter.	

Reference Books:

1	Industrial Microbiology by A. H. Patel, MacMillon India Madras, ISBN:978033390842.
2	Industrial Microbiology by Casida, L. E, Reprint 2005, New Age International, ISBN: 0-85226-
	1012.
3	Industrial Microbiology by Prescott & Dunn, 4th edition, CBS Publishers,ISBN: 81-239-1001-
	0
4	Principles of Fermentation Technology by Whitekar & Stanbury, 3rd Edition
5	Methods in Industrial Microbiology : Sikyta

Sup	Supplementary learning Material:						
1	SWAYAM (<u>https://swayam.gov.in/</u>)						
2	NPTEL (<u>https://nptel.ac.in/</u>)						
	D 4 . C10						

Page 2 of 18

- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Direct classroom Teaching
- 2. Audio-visual
- 3. Assignment/ Quizzes
- 4. Continuous assessment
- 5. Interactive participative method
- 6. Seminar Presentation

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the fundamental concept of isolation of industrial important	25
	microorganisms and their improvement.	
CO-2	Understand the types of nutrient / raw material used for the media	25
	formulations used in industry.	
CO-3	Understand the design of fermenter and construction and operation	25
	under aseptic conditions.	
CO-4	Understand the types of fermentation process. Understands the	25
	relevance of a typical fermentation process	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	May 2023			
Last Reviewed on (Month-Year):	June 2023			
Next Review on (Month-Year):	April 2024			

Page 3 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. LIFE SCIENCES (HONOURS)		
Semester:	I		
Course Code:	To be Given by University		
Course Title:	General Microbiology		
Course Group:	Discipline Specific Course - 2		

Course Objectives:

The objectives of this course are:

- a). To give students comprehensive knowledge of the historical aspects and development of Microbiology.
- b). To make the students to understand the different aspects to the classification of Prokaryotes.
- c). Students will understand the in-depth knowledge on the structure and functions of prokaryotic And eukaryotic cells.
- d). Student will learn properties of viruses and exhaustive knowledge of fungi. Further it gives insight into hands on training of basic microbial techniques which will give the student a strong base in scope of microbiology.

Teaching & Examination Scheme:

Conta	Contact hours per week			Contact hours per week			Examination Marks (Maximum / Passing)			
Locturo	Tutorial	Practical	Credits	The	eory	Prac	ctical	Total		
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total		
3		2	4	50/18	50/17	25/09	25/09	150/53		

Detailed Syllabus:

Sr.	Contents						
1	Historical foundation of Microbiology						
	• Establishment of microbiology as a discipline: Spontaneous generation vs						
	biogenesis, Contributions of Anton von Leeuwenhoek, Louis Pasteur,						
	Robert Koch, Joseph Lister, Alexander Fleming. Role of microorganisms in						
	fermentation, Germ theory of disease, Development of various						
	microbiological techniques and golden era of microbiology.						
	• Development of the field of soil microbiology: Contributions of Martinus W.						
	Beijerinck, Sergei N. Winogradsky, Selman A.Waksman. Establishment of						
	fields of medical microbiology and immunology through the work of Paul						
	Ehrlich, Elie Metchnikoff, Edward Jenner.						

Page 4 of 18

2	 Classification and Prokaryotic cell structure Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three kingdom classification systems and their utility. Classification in brief as per Bergey's Manual of Systematic Bacteriology. Overview of prokaryotic cell structure, prokaryotic cell membranes, prokaryotic cytoplasm, cytoplasmic inclusion bodies, cell wall, ribosome, and capsule. Bacterial endospores, exospores, and cyst. Bacterial motility. Bacterial chromosome, nuclear material, plasmid and episomes. 	11
3	 Eukaryotic cell structure and function Overview of eukaryotic cell structure, Eukaryotic membranes, Cytoplasmic matrix, Organelles of the biosynthetic-secretory and endocytic pathways, Ribosomes, Mitochondria, Chloroplast, Nucleus, Structures external to the plasma membrane, Comparison of prokaryotic and eukaryotic cells. 	11
4	 Viruses, Other Acellular Agents and Fungi Introduction to viruses, General properties of viruses, Viral reproduction, Cultivation of viruses, Virus purification and assays, Principles of virus taxonomy, Viroids and Virusoids, Prions. Lytic and lysogenic cycles. Introduction of fungi, Distribution, Structure, Nutrition and metabolism, Reproduction, Characteristics of fungal divisions and Economic significance. 	11

List of Practicals / Tutorials:

1	Preparation and sterilization of culture media for bacterial cultivation
2	Study of different shapes of bacteria using permanent slides/ pictographs
3	Simple staining: Monochrome staining and Differential: Gram's staining
4	Determination of motility of bacteria by (i) Hanging drop method (ii) Agar stab method
5	Isolation of bacteria [Streak plate, spread plate, pour plate, serial dilution]
6	Determination of CFU count.
7	Study of the following fungi by preparing temporary mounts: <i>Rhizopus</i> and <i>Aspergillus</i> .

Reference Books:

1	Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book
	Company.
2	Dubey RC and Maheswari DK. A Text book of Microbiology. (2005).S. Chand & Company Ltd.,
	New Delhi.
3	Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition.
	Pearson Education.
4	Stanier RY, Ingraham JL, Wheelis ML, and Painter PR. (2005). General Microbiology. 5th
	edition. McMillan.
5	Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T.Brown Publishers. 3.
	Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition.
6	Willey JM, Sherwood LM, and Woolverton CJ. (2008). Prescott, Harley and Klein's
	Microbiology. 7th edition. McGraw Hill Higher Education.
7	Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition.
	Pearson Education limited.

Page 5 of 18

8	Madigan MT, Martinko JM and Parker J. (2009). Brock Biology of Microorganisms. 12th
	edition. Pearson/Benjamin Cummings.

Sup	Supplementary learning Material:				
1	SWAYAM (<u>https://swayam.gov.in/</u>)				
2	NPTEL (<u>https://nptel.ac.in/</u>)				
3	e-PATHSHALA (<u>https://epathshala.nic.in/</u>)				
4	DIKSHA (<u>https://diksha.gov.in/</u>)				

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit / sample collection/ data collection etc
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;			
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating			
50	20	10	10	5	5				

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Acquire knowledge about history and scope of Microbiology.	25
CO-2	Understand various methods of microbial classification.	25
CO-3	Differentiate prokaryotic and eukaryotic cell structure and functions.	25
CO-4	Learn about viruses and nutritional requirements and modes of	25
	reproduction in fungi.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	May 2023			
Last Reviewed on (Month-Year):	June 2023			
Next Review on (Month-Year):	April 2024			

Page 6 of 18

Effective from Academic Batch: 2023-24

Programme: B.Sc. LIFE SCIENCES (HONOURS)

Semester:

Course Code: To be Given by University

Course Title: Molecules of life

Ι

Course Group: Discipline Specific Course - 3

Course Objectives:

The objectives of this course are:

- a). To provide insight into fundamentals of structures and functions of biomolecules. Student will able to understand basic structure of enzymes and mechanism of action.
- b). It also helps to understand the properties of carbohydrates, proteins, lipids, cholesterol, DNA, RNA, glycoproteins and glycolipids and their importance in biological systems.
- c). To develop skills to determine amino acid and nucleotide sequences of proteins and DNA respectively.

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)					
Locturo	Tutorial	al Practical	Credits	Theory		Practical		Total
Lecture				Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/09	25/09	150/53

Detailed Syllabus:

Sr.	Contents	Hours					
1	Introduction to Bio molecules	12					
	• Nature of biological material and general properties of biomolecules. Carbohydrate: Introduction, occurrence, physiological importance, classification of carbohydrates, monosaccharide, disaccharide, oligosaccharides and polysaccharides.						
	• Physiological properties of carbohydrates, asymmetric centre in monosaccharides, Optical isomerism, stereoisomerism, epimers, mutarotation, diasterioisomerism configuration in sugar, cyclic structure anomeric carbon atom, fisher's projection formula, Haworths representation.						
	• Chemical properties of carbohydrates, oxidation and reduction of sugars, action of mineral acids, hydrogen cyanide, and hydrazine on sugars due to hydroxyl groups, reducing action of sugars.						
	• Polysaccharides: occurrence, structure and physiological importance of starch, glycogen, cellulose, hemicellulose, dextrin, pectin, agar, hyalouronic acid, heparin and chondrotin sulphate.						
2	Amino acids and proteins	11					
	 Structure and classification of amino acids, rare aminoacids of proteins, non-protein, aminoacids, Essential aminoacids, amphoteric nature of protein, titration curve of glycine. Physical properties of amino acids-stereospecificity and optical activity. Chemical properties of amino acids, chemistry of peptide linkage. Classification of proteins, solubility criteria: salting in and out of protein. Denaturation of proteins. Structure of proteins with examples (Primary, Denaturation of proteins). 						
3	secondary, tertiary, quaternary). Determination of sequence of proteins. Lipids	11					
5	 Definition, classification of lipids, fatty acids, essential fatty acids triacylglycerol, properties of triacylglycerol, phospholipids, glycolipids, sphingolipids, sterols, there properties, structures, functions. Lipoproteins. 	11					
4	Nucleotides and nucleic acid	11					
	• Structure of nitrogen bases and sugars, structure of nucleosides and nucleotides, Ribose, Deoxyribose and their conformation Structure and properties of DNA, forms of DNA.						
	Enzymes						
	• Nomenclature and classification, chemical nature and properties of enzymes, factor affecting enzyme activity, active site, enzyme inhibition, enzyme specificity, Coenzymes.						

Page 8 of 18

List of Practicals / Tutorials:

1	Identification of biomolecules: Carbohydrate (Molisch's test), Protein (Biuret) &	
	lipid (Saponification).	
2	Qualitative analysis of carbohydrates: Molisch's test, Iodine test, Benedict's test,	
	Fehling's test, Cole's test, Barfoed's test, Saliwanoff's test, Rapid furfural test,	
	Osazone test, Mucic acid test, Inversion test.	
3	Qualitative analysis of proteins: Precipitation test, Mercuric nitrate test, Lead acetat	
	test, Sulphosalicyllic test, Potassium ferricyanide test, Tannic acid test, Alcohol test,	
	Heller's test, Ammonium sulphate test.	
4	Qualitative analysis of amino acids: Colour reactions, Biuret test, Ninhydrin test,	30
	Millon's test, Arginine test (Sakaguchi test), Xanthoproteic test, Hopkin's Cole test,	
	Ehrlich test, Nitroprusside test.	
5	Qualitative analysis of fat: Test for oil, Solubility test, Dichromate test, Emulsion	
	test, Absorption test, Glycerol test, Acid value of oil, Saponofication test, Iodine	
	test, Borax test, and Liebermann-Burchard test.	
6	Estimation of protein by Biuret method.	
7	Estimation of carbohydrate by DNS method.	
8	Estimation of DNA by DPA method.	

Reference Books:

Refer	ence books.
1	Biochemistry by Lubert Stryer, W. H. Freeman and Company. 4th /6 th edition, 2000/2004
	Hardback, ISBN 0716720094
2	Fundamentals of Biochemistry: Life at the Molecular Level, by D. Voet, J. G. Voet, and C. Pratt,
	3rd Edition, John Wiley and Co John Wiley & Sons, Inc., New York, , 2008 ISBN :
	0471214957; 9780471214953
3	Principles of Biochemistry by Albert Lehninger, W.H. Freeman & Company; 3rd edition
	(February 2000), ISBN-10: 1572591536
4	Harper's Biochemistry: Harper, 27 th Edition, McGraw-Hill Publishing Co; Robert K. Murray,
	Daryl K. Granner, Victor W. Rodwell, 2006 ISBN-10: 0071461973
5	Outlines of Biochemistry by Conn E E , Stumps P E and and Doi, R.H., John Wiley and sons,
	Singapore, 5 th Edition – 2001
6	Principles of Biochemistry by Horton,Morgan, Secrimgeour,Perry, Rawn , pearson
	International edition – 4 th edition ISBN 978-1-4058-2573-3
7	Harper's Biochemistry: R. K. Murray and others. Appleton and Lange, Stanford. ISBN:
	0838536905 25 edition (pb) 2000
8	Plummer, D.T. (1987). 3rd ed. An introduction of Practical Biochemistry. McGraw Hill Book
	Co.

Sup	Supplementary learning Material:				
1	SWAYAM (<u>https://swayam.gov.in/</u>)				
2	NPTEL (<u>https://nptel.ac.in/</u>)				
3	e-PATHSHALA (<u>https://epathshala.nic.in/</u>)				

Page 9 of 18

4 DIKSHA (https://diksha.gov.in/)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Sample collection/ data collection etc
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis	Distribution of Theory Marks in %				n %	R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		C	N: Analyzing; E: Evaluating; C: Creating		
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand chemical and physical characters of biomolecules to be	25
	known to the students.	
CO-2	Learn the structure, classification and functions of Carbohydrates, Lipid	25
	and Protein.	
CO-3	Different protein structure, their physical chemical properties	25
CO-4	Learn the structure, classification and functions of Nucleic acid and	25
	enzyme.	

Curriculum Revision:			
Version:	1.0		
Drafted on (Month-Year):	May 2023		
Last Reviewed on (Month-Year):	June 2023		
Next Review on (Month-Year):	April 2024		

Page 10 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. LIFE SCIENCES (HONOURS)
Semester:	I
Course Code:	To be Given by University
Course Title:	Chemistry–I
Course Group:	Generic Elective

Course Objectives:

The objectives of this course are:

- a). To educate the students to develop the knowledge of the fundamental principles of chemistry and to enable understanding of the nomenclature, structural, isomerism, stereochemistry of organic compounds.
- b). Student will understand acid-base concept and solution behaviour. It provides the fundamental knowledge of the properties of transition metals and basics of coordination chemistry.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Practical	Credits		Theory		Practical	
Lecture				Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/09	25/09	150/53

Detailed Syllabus:

Sr.	Contents	Hours						
1	IUPAC nomenclature	12						
	Introduction of organic compound and their classification. Physical Properties and systemic IUPAC nomenclature of different class of organic compounds including alkanes, alkenes, alkynes, cycloalkanes, bicyclic, spiro, aromatic and heterocyclic compounds.							
2	Stereochemistry							
	Elements of symmetrycentre, plane and axis of symmetry. Isomers and							
	classification of isomers. Configuration, conformational isomers. Separation of							
	enantiomers. Absolute configuration (R and S). Conversion of projection formulas.							
	Stereochemistry of compounds containing two asymmetric carbon atoms.							
	Conformations around a C-C bond in acyclic compounds.							
	Structure of cycloalkanes, Cyclohexane conformations. Stereochemistry of							
	disubstituted cyclohexanes.							

Page 11 of 18

3	Ionic equilibrium in aqueous solutions	11						
	Acids & Bases, Arrhenius theory of Acids and Bases, The Lowry - Bronsted							
	Concept, Strength of Acids and Bases, The Lewis concept, pH Scale, pH and Buffers							
	Structure and physical properties of water, Self-Ionization of water, Hydrolysis,							
	Buffer Solutions, Indicator, Sparingly Soluble Salts, Common ion effect, Selective							
	Precipitation, acid-base titration and use of indicators, mathematical treatment of							
	acid-base titrations.							
4	Fundamental concept of coordination chemistry							
	Position of d-block elements in the periodic table, Electronic configuration and							
	Classification of d-block elements in 3d, 4d, 5d and 6d series. Definition of							
	coordination compounds Werner's theory, Co-ordination number, Classification of							
	ligands, Nomenclature of co-ordination compounds, Chelate, chelating ligand and							
	Chelation, Uses of Chelates.							

List of Practicals / Tutorials:

1	Volumetric analysis: Determination of concentration of Strong acid [HCl] and weak acids [oxalic acid/Acetic acid] by titrating against strong base [NaOH].					
2	Volumetric analysis: Determination of concentration of transition metal salts (Cu, Ni, Zn) by titrating against EDTA.					
3	Qualitative Analysis : Identification of Organic substance:Salicylic acid, Cinnamic acid, Benzoic acid, α -Naphthol, β -Naphthol, o -nitroaniline, m-nitroaniline, p-nitroaniline, Naphthalene, m-dinitrobenzene, Anthracene.					

Reference Books:

1	Morrison R. T. & Boyd R. N., <i>Organic chemistry</i> (6 th edition).							
2	IUPAC nomenclature by Robert M. Silverstein.							
3	Stereochemistry by P. S. Kalsi.							
4	A text book of organic chemistry by Arun Bahl& B. S. Bahl, 16 th Edition							
5	Principles of Physical chemistry by B. R. Puri, L. R. Sharma and M. S. Pathania, 41 th Ed.							
6	Biophysical chemistry, Principles and Techniques by Upadhyay, Upadhyay and Nath.							
7	Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley							
8	Elements of Physical Chemistry by S. Glasstone and D. Lewis							

Supplementary learning Material:

1 SWAYAM (<u>https://swayam.gov.in/</u>)

- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- 3 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

1. Audio -visual aids, power point presentation, videos, animation, models etc.

2. Continuous assessment based on quiz, assignment, seminar.

3. Industrial visit

4. Laboratory experiments

5. Demonstration

Page 12 of 18

6. Student feed back

7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis	tributi	on of T	heory M	larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	A N E C		C	N: Analyzing; E: Evaluating; C: Creating	
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage					
CO-1	Understand the fundamental principles of organic chemistry that	25					
	include chemical bonding						
CO-2	Learn nomenclature, structural of various classes of compounds 25						
CO-3	Develop concept of isomerism, stereochemistry, Chirality 25						
CO-4	Acquire concept of Acidity, Alkalinity, applications of indicator	25					

Curriculum Revision:						
Version:	1.0					
Drafted on (Month-Year):	May 2023					
Last Reviewed on (Month-Year):	June 2023					
Next Review on (Month-Year):	April 2024					

Page 13 of 18

Effective from Academic Batch: 2023-24

Programme: B.Sc. LIFE SCIENCES (HONOURS)

- Semester: I
- **Course Code:** To be Given by University
- Course Title: English

Course Group: Ability Enhancement Course

Course Objectives:

The objectives of this course are:

- a). English is now used almost exclusively as the language of science. By learning a single language, scientists around the world gain access to the vast scientific literature and can communicate with other scientists anywhere in the world.
- b). Students will learn about various scientific terms and will be able to enhance skills. Verbal and Non-verbal communication, writing skills, reviewing will be remedy for the students to get better and better subjectively.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	Examination Marks (Maximum / Passing)			
Lecture	Tutorial	Practical	Credits	Theory		Practical		Total
				Internal	External	Internal	External	Total
2			2	50/18	50/17			100/35

Detailed Syllabus:

Sr.	Contents	Hours							
1	Vocabulary and Presentation Skill Development	15							
	• Listening Skills, Speaking Skills, Reading Skills and Writing Skills (LSRW)								
	 Defining the Purpose & how to make an effective presentation (MS) 								
	PowerPoint)								
	Outline preparation								
	Review / Content / Précis writing.								
2	Introduction and Language of Communication	15							
	Theory of Communication, Types and Modes of Communication								
	 Verbal and Non-verbal (Spoken and Written) 								
	 Personal, Social and Business Barriers and Strategies; Intra-personal, Inter- personal and Group communication, Expressing opinions 								

Page 14 of 18

Reference Books:

- **1** Fluency in English Part II, Oxford University Press, 2006.
- **2** Business English, Pearson, 2008.
- **3** Language, Literature and Creativity, Orient Blackswan, 2013.
- 4 Language through Literature (forthcoming) ed. Dr. Gauri Mishra, Dr Ranjana Kaul, Dr Brati Biswas

Supplementary learning Material:

1 SWAYAM (<u>https://swayam.gov.in/</u>)

2 NPTEL (<u>https://nptel.ac.in/</u>)

3 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)

4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

1. Audio -visual aids, power point presentation, videos, animation, models etc.

- 2. Continuous assessment based on quiz, assignment, seminar.
- **3.Group Discussion**
- 4. Student feed back
- 5. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	A N E C		С	N: Analyzing; E: Evaluating; C: Creating	
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the preparation of Well-organized presentation slides	50
CO-2	Improve presenting skill	50

Curriculum Revision:						
Version:	1.0					
Drafted on (Month-Year):	May 2023					
Last Reviewed on (Month-Year):	June 2023					
Next Review on (Month-Year):	April 2024					

Page 15 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. LIFE SCIENCES (HONOURS)
Semester:	I
Course Code:	To be Given by University
Course Title:	Microbial Techniques
Course Group:	Skill Enhancement Course

Course Objectives:

The objectives of this course are:

- a) Ability to apply the tools and techniques of Microbiology in conducting research.
- b) Acquire basic skills in aseptic techniques, microscopy.
- c) Learn different staining techniques, microbial cultivation, and enumeration techniques.
- d) Prepare the student for advance studies in the subject of Microbiology.

Teaching & Examination Scheme:

Contac	act hours per week Cours			ontact hours per week Course Examination Marks (Maximum / Passing)					sing)
Locturo	Tutorial Practical		Dreatical Credits		Theory		Practical		
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total	
		2	2			50/18	50/17	100/35	

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction to laboratory equipment: (Principle and Applications)	15
	Microscope, Autoclave, Hot air oven, Incubator, pH meter, biological safety cabinet.	
	Cleaning and sterilization of glassware.	
	Sterilization techniques – Chemical, UV, autoclaving, and membrane filtration.	
	Basic microbe handling techniques.	
	Cryo-stock and glycerol stock preparation, maintenance, and Preservation of Bacteria.	
	Special Staining Techniques: Endospore staining, Acid fast staining, Capsule staining,	
	Metachromatic granules staining, cell wall staining.	

Page 16 of 18

2	Media preparation and cultivation of microbes	15
	Liquid media- Peptone water, Nutrient broth; Solid media- Nutrient agar (Agar slant, Agar	
	plate); Enriched Medium- Blood agar; Differential medium - Mac Conkey agar; Enrichment	
	Medium - Selenite F broth; Selective medium- EMB, MSA.	
	Isolation and cultivation of bacteria.	
	Preparation of culture media for cultivation of yeast and fungi (spoiled	
	bread/fruits/vegetable).	
	Isolation of bacterial flora of skin by swab method.	
	Determination of microbiological quality of milk sample by MBRT.	

Reference Books:

1	Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book
	Company.
2	Murphy, D.B. Fundamental of Light Microscopy & Electron Imaging.1st Edition.Wiley-Liss.(2001).
3	Stanier RY, Ingraham JL, Wheelis ML, and Painter PR. (2005). General Microbiology. 5th edition.
	McMillan.

Supplementary learning Material:

1 SWAYAM (<u>https://swayam.gov.in/</u>)

- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- 3 e-PATHSHALA (https://epathshala.nic.in/)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

1. Audio -visual aids, power point presentation, videos, animation, models etc.

- 2. Continuous assessment based on quiz, assignment, seminar.
- 3.Group Discussion
- 4. Student feed back
- 5.. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis	Distribution of Theory Marks in %				n %	R : Remembering; U : Understanding; A : Applying;
R	R U A N E C		С	N: Analyzing; E: Evaluating; C: Creating		
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Page 17 of 18

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students will familiarize with various lab equipments relevant to	50
	microbiological work. They will learn different types of staining to	
	observe microbes and their cell components.	
CO-2	Students will learn to prepare different media, cultivation method and	50
	their applications.	

Curriculum Revision:	
Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 18 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. LIFE SCIENCES (HONOURS)
Semester:	II
Course Code:	To be Given by University
Course Title:	Introduction to Bioprocess Technology
Course Group:	Discipline Specific Course - 1

Course Objectives:

The objectives of this course are:

- a.) To impart knowledge about fermentation processes and its relevant aspects.
- b). The course will teach strain improvement strategies, sterilization of media and air and maintenance of media quality.
- c). It will be useful to understand various bioreactors and their applications. It is also useful to understand microbial growth, its kinetics and its relevance with product formation.
- d). This course will enable the students to understand the concept and importance of fermentation processes.

Teaching & Examination Scheme:

Conta	ct hours p	er week	Course	Examination Marks (Maximum / Passing)				assing)
Loctur	Tutoria	Practica	Credits	The	eory	Prac	ctical	
Lectur	1 utoria	Practica		Interna	Externa	Interna	Externa	Total
e	I	1		l	l	l	l	
3		2	4	50/18	50/17	25/09	25/09	150/53

Detailed Syllabus:

Sr.	Contents	Hours
1	Strain improvement of Industrially important microorganism	12
	Isolation of mutant producing primary and secondary metabolites	
	isolation and use of auxotrophic mutants, isolation and use of revertant mutants	
	Use of protoplast fusion	
	Use of parasexual cycle	
	Use of recombination systems	
2	Sterilization methods and principles:	11
	Media sterilization, mathematical modelling of sterilization processes,	
	Arrhenius equation, Del factor, effect of sterilization on media quality and yield	
	coefficients, batch and continuous sterilization, filter and steam sterilization at	
	industrial scale	

Page 1 of 20

3	Design of fermenter and reactors: Basic components of a fermenter,	11
	laboratory and industrial scale fermenters, mechanical, Types of fermenter like	
	stirred tank, bubble column, airlift, packed beds, fluidized beds, photo-	
	bioreactors and animal cell culture bioreactor, Plug flow reactors	
	Bioprocess Control parameters: Instrumentation for monitoring bioreactor	
	and fermentation processes, Sensors, Controllers, fermentation control systems	
	and architecture, Incubation and sequence control, and containment.	
4	Microbial Growth kinetics: Kinetics of growth and substrate utilization in	11
	batch, fed batch and continuous systems. Inoculum development, aseptic	
	inoculation and sampling.	
	Agitation and aeration: Mass transfer of oxygen, Determination of KLa, factors	
	affecting KLa, fluid rheology, Newtonian and non-Newtonian fluids, Bingham	
	plastic, pseudo plastic, power number, Reynolds number.	

List of Practicals / Tutorials:

1	Replica plate technique for isolation of Auxotroph and antibiotic resistant	
	mutants.	
2	Grid Plate technique for isolation of antibiotic resistant mutants.	
3	Sterility testing of pharmaceutical products like (antibiotics /distilled water for	20
	injection).	30
4	Estimation of ethanol by dichromate method	
5	Immobilization of microbial cells by entrapment method	
6	Determination of KLa using sulphite oxidation method	

Reference Books:

1	Principles of Fermentation Technology by Whitekar & Stanbury, 3rd Edition
2	Methods in Industrial Microbiology : Sikyta
3	Fermentation Microbiology and Biotechnology, El Mansi and Bryc
4	Comprehensive Biotechnology : Murray Moo Young

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Direct classroom Teaching
- 2. Audio-visual
- 3. Assignment/ Quizzes
- 4. Continuous assessment
- 5. Interactive participative method
- 6. Seminar Presentation

Page 2 of 20

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %			larks i	n %	R : Remembering; U : Understanding; A : Applying;		
	R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
	50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	The students can able to understand the role of microbes in	25
	fermentation processes. They can understand the different strategies of	
	strain improvement which can enhance the industrial production of	
	desire compound.	
CO-2	Understands aseptic environment, sterilization and its various methods.	25
CO-3	Will know fermenter design, its components and its variable control	25
	parameters.	
CO-4	Understands microbial growth, it's kinetics and association of product	25
	formation with growth. The students will understand the concept of	
	mass transfer and various methods to determine KLa.	

Curriculum Revision:	
Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 3 of 20

Effective from Academic Batch: 2023-24

Programme: B.Sc. LIFE SCIENCES (HONOURS)

Semester:	II
Course Code:	To be Given by University
Course Title:	Microbial Physiology
Course Group:	Discipline Specific Course – 2

Course Objectives:

The objectives of this course are:

- a). To educate the students to develop a clear understanding of the fundamental concepts of microbial physiology and metabolism occurring inside microbes.
- b). The students will understand nutritional classification of microbes.
- c). Students will understand pure culture techniques and methods of culturing, preservation and maintenance of microorganisms.
- d).This course will aid students to acquire skills and competence in microbiological laboratory practices.

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pas	sing)
Locturo	ecture Tutorial		Credits	The	eory	Practical		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/09	25/09	150/53

Detailed Syllabus:

Sr.	Contents	Hours
1	Microbial Nutrition	12
	Nutritional types: Requirement of nutrients for microbes and classification of	
	microorganisms based on carbon, energy and electron sources viz.	
	Autotroph/Phototroph, heterotrophy, Chemolithoautotroph,	
	Chemolithoheterotroph, Chemoheterotroph, Chemolithotroph,	
	photolithoautotroph, Photoorganoheterotroph. Primary and secondary active	
	transport; Passive and facilitated diffusion. Effect of oxygen on growth,	
	classification on the basis of oxygen requirement and tolerance (aerobic, anaerobic,	
	microaerophilic, facultative aerobe, facultative anaerobe).	

Page 4 of 20

2	Media type, control and Preservation	11
	 Role of macro and micro-nutrients. Components of media: Natural, Synthetic, Complex, Selective media, Differential Media, Enriched and enrichment media. Methods for culturing aerobic and anaerobic bacteria; Colony and broth culture characteristics. Physical methods of microbial control: heat, low temperature, high pressure, filtration, desiccation, osmotic pressure, radiation. Chemical methods of microbial control: disinfectants, types and mode of action. Maintenance and preservation techniques for microorganisms (Sub culturing, Oil overlay, Sand cultures, Storage at low temperature, Lyophilisation, Liquid Nitrogen). 	
3	 Microbial Growth Growth in Microbes (growth phases, generation time, growth curve and specific growth rate). Measurement of cell mass and cell number; Factors affecting microbial growth; Continuous and batch cultures; details of synchronous and Diauxic growth curve. Physical factors influencing growth: Temperature; pH; Atmospheric Pressure; Salt Concentration. Chemical factors: heavy metal (copper), surfactants. Control of Microorganisms: patterns of microbial death, control of microorganism growth by antiseptics. 	11
4	 Microbial Photosynthesis Concept of photosynthesis and associated pigments in microbes; photosynthetic apparatus in pro and eukaryotes; anoxygenic and oxygenic photosynthesis; light and dark reaction; photorespiration and its significance; Effect of light, temperature; pH and CO₂ concentration on photosynthesis; measurement of net photosynthetic yield. Electron transport chain in photosynthetic bacteria. 	11

List of Practicals / Tutorials:

1	Introduction of media and its constituents for microbial growth.	
2	Different methods for isolation and maintenance of microorganisms.	
3	Isolation of microbes using differential media.	
4	To study and plot the growth curve of <i>E. coli</i> using spectrophotometric method and	
	to calculate specific growth rate and generation time.	
5	To study and plot the growth curve of Aspergillus niger by radial growth	30
	measurements.	
6	To study the effect of temperature of <i>Aspergillus niger</i> by dry weight method.	
7	Demonstration of the thermal death time and decimal reduction time of <i>E. coli</i> .	
8	Isolation of Photosynthetic bacteria.	
9	Preservation of bacterial cultures.	

Reference Books:

1	Moat A.G. and Foster S.W. Microbial Physiology (4th Ed.) (2004). John Wiley and Sons, New
	York.
2	Gerald Karp. Cell Biology (3rd Ed.) (2003). McGraw Hill Book Company, New York.

Page 5 of 20

3	Stanier R. Y, Ingrahm J. I, Wheelis M. L and Painter P. R. General Microbiology. (5th Ed.)
	(1987). McMillan Press. UK.
4	Dubey R. C and Maheswari D. K. A Text book of Microbiology. (2005).S. Chand & Company
	Ltd., New Delhi.
5	Nelson D. L. & Cox M. M. Lehninger's Principles of Biochemistry, 4th edition. (2005). W. H.
	Freeman & Co. NY.
6	Pelczar Jr, M. J, Chan E. C. S., Krieg N R, Microbiology, (5th Ed.), (2001). McGraw Hill Book
	Company, NY.
7	Madigan M. T, Martinko J. M and Parker J. (2003). Brock Biology of Microorganisms. 10th
	edition. Pearson/Benjamin Cummings.
8	Reddy S. R. and Reddy S. M. (2005). Microbial Physiology. Scientific Publishers India.

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit / sample collection/ data collection etc
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis						R : Remembering; U : Understanding; A : Applying;
R	U	Α	A N E C		С	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Design synthetic media for screening of specific culture.	25
CO-2	Describe and differentiate type of growth requirement for specific	25
	microbial culture.	
CO-3	Describe and evaluate the growth of microorganisms and factors	25
	affecting it.	
CO-4	Describe the microbial photosynthesis and depict the role of pigments	25
	associated with microbes.	

Page 6 of 20

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	May 2023				
Last Reviewed on (Month-Year):	June 2023				
Next Review on (Month-Year):	April 2024				

Page 7 of 20

Effective from Academic Batch: 2023-24

Programme:B.Sc. LIFE SCIENCES (HONOURS)Semester:IICourse Code:To be Given by UniversityCourse Title:Enzymology

Course Group: Discipline Specific Course – 3

Course Objectives:

The objectives of this course are to enable students....

- a). To understand the Enzyme and their classification, structure of enzyme and their action & purification.
- b). The course will teach the enzyme kinetics, mechanisms of enzyme catalysis and Methods to study enzymes and its mechanisms of regulations using suitable examples of enzymes in the cell.

Conta	ct hours pe	er week	Course Examination Marks (Maximum / Pas			sing)		
Locturo	Tutorial	Practical	Credits	Theory		Practical		Total
Lecture	Tutorial			Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/09	25/09	150/53

Teaching & Examination Scheme:

Detailed Syllabus:

Sr.	Contents	Hours
1	An Introduction to enzymes: What are enzymes, brief history of enzymes, concepts of coenzymes, cofactors, holoenzymes, apoenzyme, activators, inhibitors, regulatory enzymes. Specificity of enzyme (active site) and models for enzyme specificity (Lock and key, induced-fit and transition-state stabilization hypothesis). Enzyme classification: IUB enzyme classification.	12
2	Methods for isolation and purification of enzymes:- Methods for homogenization of tissue, Method for protein purification depend on size (centrifugation, gel filtration, dialysis and ultrafiltration), Method for protein purification depend on polarity (ion-exchange chromatography, electrophoresis, isoelectric focusing, hydrophobic interaction chromatography), Method for protein purification depend on changes in solubility (change in pH, change in ionic strength, decrease in dielectric constant), Method for protein purification depend on specific binding sites or structural features (affinity chromatography, affinity elution, dye-ligand chromatography, immunoadsorption chromatography and covalent chromatography).	11

Page 8 of 20

3	Enzyme kinetics:- Concept of activation energy for uncatalyzed and catalyzed	11
	(chemical and enzyme) reaction. Type of reaction (zero-order, first-order and	
	second order). Unisubstrate enzyme kinetics; factors affecting the rate of enzyme	
	catalyzed reactions forms and derivation of Michaelis-Menten equation; significance	
	of V _{max} , K _m and different plots (Lineweaver-Burk, Eadie-Hofstee and Hanes plots).	
	Enzyme inhibition – type of inhibition (reversible and irreversible), competitive,	
	non-competitive, uncompetitive, mixed, partial, substrate, and allosteric.	
4		
4	Mechanism of Enzyme Action and immobilization of enzymes:	11
4	Mechanism of Enzyme Action and immobilization of enzymes: Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme,	11
4	Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme,	11
4	Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme, Chymotrypsin, Carboxypeptidase, Aspartate Transcarbomylase. Allosteric enzymes	11
4	Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme, Chymotrypsin, Carboxypeptidase, Aspartate Transcarbomylase. Allosteric enzymes and sigmoidal kinetics: Protein ligand binding, Co-operativity, MWC & KNF models,	11
4	Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme, Chymotrypsin, Carboxypeptidase, Aspartate Transcarbomylase. Allosteric enzymes and sigmoidal kinetics: Protein ligand binding, Co-operativity, MWC & KNF models, Immobilized enzymes:- Methods of immobilization, use of immobilized enzymes,	11
4	Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme, Chymotrypsin, Carboxypeptidase, Aspartate Transcarbomylase. Allosteric enzymes and sigmoidal kinetics: Protein ligand binding, Co-operativity, MWC & KNF models,	11

List of Practicals / Tutorials:

1	Estimation of reducing sugar by DNS method			
2	Determination of invertase activity			
3	Effect of enzyme concentration on enzyme catalyzed reaction			
4	Effect of pH on enzyme catalyzed reaction			
5	Effect of temperature on enzyme catalyzed reaction			
6	Effect of time on enzyme catalyzed reaction			
7	Effect of substrate concentration on enzyme catalyzed reaction and determination of			
	Km and Vmax of enzyme			
8	Demonstration of immobilization of enzyme/whole cell using appropriate method			

Reference Books:

ence books.
Fundamentals of enzymology: Nicholason Price & Stevens ISBN – 0-19850-229-X.
Enzymes: Biochemistry, Biotechnology and Clinical Chemistry: Trevor Palmer, Philip L.
Bonner, 2 nd edition Horwood Publishing Limited, ISBN – 978-1-904275-27-5 .
Biochemistry: DonaldVoet, Judith G. Voet, 4th Edition, John Wiley & Sons, Inc., New York, 2008
ISBN -13 978-0470-57095-1
Fundamentals of Biochemistry:Life at the Molecular Level, D Voet, J.G Voet and C. W. Pratt. 5 th
Edition John Wiley and Sons, Inc, New York, ISBN -978-1-118-91840-1.
Biochemistry: Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Jr., LubertStryer8th Edition.
W. H. Freeman and Company; ISBN–13: 978-1-4641-2610-9.
Textbook of Medical Biochemistry: Chatterjee M.N and Rana Shinde. 8th Edition, Jaypee
Brothers Medical Publisher PVT Ltd. ISBN - 978-93-5025-484-4.
Lehninger Principles of Biochemistry: David L. Nelson, Michael M. Cox,7 th Edition. W. H.
Freeman and Company. ISBN – 13: 978-1-4641-2611-6.
Harpers's Biochemistry: Robert Murray, Victor Rodwell, David Bender, Kathleen M. Botham, P.
Anthony Weil, Peter J. Kennelly, 28th Edition.Mc Graw Hill Publishing Company. ISBN - 978-0-
07-170197-6.
Practical Enzymology: Prof. Dr. Hans Bisswanger 2 nd Edition (2011, Wiley-Blackwell) ISBN-
978-3-527-32076-9.

Page 9 of 20

Sup	Supplementary learning Material:					
1	SWAYAM (https://swayam.gov.in/)					
2	COURSERA (https://www.coursera.org/)					
3	NPTEL (https://nptel.ac.in/)					
4	e-PATHSHALA (https://epathshala.nic.in/)					
5	DIKSHA (https://diksha.gov.in/)					

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit / sample collection etc
- 4. Laboratory experiments
- 5. Problem solving
- 6. Demonstration
- 7. Student feed back

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis	tributio	on of T	heory N	larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	U A N E C		С	N: Analyzing; E: Evaluating; C: Creating	
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the fundamental concept of enzymes and their specificity of	25
	action and classification.	
CO-2	Understand Enzyme purification strategies from variety of sources and	25
	to study the purity of enzymes	
CO-3	Understand the enzyme kinetics with respect to presence of Substrate,	25
	inhibitors and activators and significance of Km, Vmax & Kcat, and	
	enzyme efficiency.	
CO-4	Understand the mechanisms of different enzyme actions. Understands	25
	the relevance of Isoenzymes and its physiological significance, enzyme	
	immobilization techniques and industrial application of enzymes.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	May 2023			
Last Reviewed on (Month-Year):	June 2023			
Next Review on (Month-Year):	April 2024			

Page 10 of 20

Effective from Academic Batch: 2023-24

B.Sc. LIFE SCIENCES (HONOURS)
II
To be Given by University
Chemistry-II
Generic Elective

Course Objectives:

The objectives of this course are to enable students.....

- a). To educate the students to develop the knowledge of the basics of quantitative analysis.
- b). Understanding of the standardization and student can apply theoretical knowledge to prepare solutions and basic chemical analysis methods.
- c). Student will understand clearly reaction kinetics and thermodynamic parameters of reaction and their application in biological system.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Practical	Credits	The	eory	Prac	tical	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/09	25/09	150/53

Detailed Syllabus:

Sr.	Contents	Hours						
1	General Introduction of analytical chemistry							
	Introduction, Qualitative and Quantitative analysis, Types of titrations.							
	Requirements for titrimetric analysis. Concentration systems: molarity, formality,							
	normality, wt%, ppm, milliequalence and millimoles-problems. Primary and							
	Secondary standards, criteria for primary standards. Preparation of standard							
	solutions, standardization of solutions. Limitation of volumetric analysis, endpoint							
	and equivalence point.							
	Introduction to Instrumental and Chemical Methods of analysis, Applications of							
	Chemical Analytical Chemistry, Sampling of Solid, Liquid and Gas, Stages of							
	Analysis, Interferences, Selection of Methods, limitations of Analytical Methods.							

Thermodynamics	11
Terminology of thermodynamics, First law of thermodynamics, internal energy,	
enthalpy of a system, heat capacity, spontaneous process, Second law of	
thermodynamics, concept of entropy, entropy of mixing, standard entropies,	
criteria for reversible and irreversible process, Gibbs-Helmholtz equation, Third	
law of thermodynamics, determination of absolute entropies of elements and	
compounds. Applications of first and second law of thermodynamics in living cells.	
Chemical Kinetics	11
Introduction, Rate of reaction, Rate constant, Half life time, Determination of Half	
life time of reaction, Order of reaction Derivation of First law, second order rate	
reaction constant for (a=b) and (a \neq b). Derivation of third order. Mathematical	
problems. Catalysis characteristics of catalysis, Types of catalysis, homogeneous	
and heterogeneous catalysis, enzymecatalyzed reaction and derivation mechanism.	
Physical properties of liquids	11
Surface tension: surface energy, factors affecting surface tension, interfacial	
tension, surface active agents, measurements of surface tensions.	
Viscosity: units of viscosity, factors affecting viscosity, measurement of viscosity,	
application of viscometer, significance of viscosity in biological system.	
	Terminology of thermodynamics, First law of thermodynamics, internal energy, enthalpy of a system, heat capacity, spontaneous process, Second law of thermodynamics, concept of entropy, entropy of mixing, standard entropies, criteria for reversible and irreversible process, Gibbs-Helmholtz equation, Third law of thermodynamics, determination of absolute entropies of elements and compounds. Applications of first and second law of thermodynamics in living cells. Chemical Kinetics Introduction, Rate of reaction, Rate constant, Half life time, Determination of Half life time of reaction, Order of reaction Derivation of First law, second order rate reaction constant for (a=b) and (a≠b). Derivation of third order. Mathematical problems. Catalysis characteristics of catalysis, Types of catalysis, homogeneous and heterogeneous catalysis, enzymecatalyzed reaction and derivation mechanism. Physical properties of liquids Surface tension: surface energy, factors affecting surface tension, interfacial tension, surface active agents, measurements of surface tensions. Viscosity: units of viscosity, factors affecting viscosity, measurement of viscosity,

List of Practicals / Tutorials:

1	Preparation of normal/molar solutions of acids and bases.	
2	Preparation and standardization of primary and secondary standard solution.	
3	Volumetric analysis of Weak Acid/ Strong Base.	
4	To determine the amount of carbonate and bicarbonate in a given mixture by	
	titrating it against sulphuric acid/ hydrochloric acid.	
5	To determine the concentration of a solution for the given liquid by determination	
	of surface-tension of a liquid by drop-volume method at various concentration.	30
6	To determine the viscosity of the given liquid with the help of Ostwald's	30
	viscometer.	
7	To determine the percentage composition of the given solution by Ostwald's	
	viscometer.	
8	To determine the molecular weight of given polymer using Ostwald's viscometer.	
9	Determination of Pka value of amino acid (glycine).	
10	Potentiometric titration of Acid / Base.	

Reference Books:

1	Quantitative analysis by R. A Day, Jr. & A. L. Underwood 6 th Edition, Printice Hall of India
	Private Limited New Delhi. 2005. ISBN: 61-203-0793-3, 9788120307933.
2	Basic concept of Analytical Chemistry by S. M. Khopkar, New age International Publishers,
	2004. ISBN 81-224-2092-3.
3	Vogel's Text book of Quantitative Chemical Analysis by J. Mendhan, R. C. Denney, M. Thomas,
	B. Sivasankar. 6 th Ed. Pearson 2009. ISBN: 978-81-317-2325-8.
4	Biophysical chemistry, Principles and Techniques by Upadhyay, Upadhyay and Nath,
	Himalaya Publishing House, 2019. ISBN 978-98-5142-227-3

Page 12 of 20

5	Principles of Physical chemistry by B. R. Puri, L. R. Sharma and M. S. Pathania, 41 th Ed. Vishal
	Publishing Co. 2012. ISBN: 81-88646-00-8
6	Lehninger's principles of biochemistry by David Nelson and Michel Cox. 5 th Ed. W. H.
	Freeman Company, New York. 2005. ISBN: 978-0-23022699-9.
7	An advance course in practical Chemistry by Ghoshal, Mahapatra, Nad. New central book
	agency, Kolkata, 2004. ISBN: 81-7381-302-7.

Supplementary learning Material:

oup	prementary rearning Material.						
1	https://camtools.cam.ac.uk/access/content/group/6041b37a-7fa4-4a47-808b-						
	b20db3a36122/Module%202/Practice%20Questions/mod2/index.htm						
2	SWAYAM (<u>https://swayam.gov.in/</u>)						
3	NPTEL (<u>https://nptel.ac.in/</u>)						
4	e-PATHSHALA (<u>https://epathshala.nic.in/</u>)						
5	DIKSHA (https://diksha.gov.in/)						

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;				
R	U	Α	Ν	E	С	C N: Analyzing; E: Evaluating; C: Creating				
50	20	10	10	5	5					

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Preparations of solution and to learn concentration units.	25
CO-2	To understand some of the basics of analytical chemistry.	25
CO-3	To learn fundamentals of thermodynamic chemistry and chemical	25
	kinetics.	
CO-4	Develop concept of physical properties of solutions.	25

Curriculum Revision:					
Version:	1.0				
Drafted on (Month-Year):	May 2023				
Last Reviewed on (Month-Year):	June 2023				
Next Review on (Month-Year):	April 2024				

Page 13 of 20

Effective from Academic Batch: 2023-24

Programme: B.Sc. LIFE SCIENCES (HONOURS)

Semester: II

Course Code: To be Given by University

Course Title: Environmental Studies

Course Group: Ability Enhancement Course

Course Objectives:

The objectives of this course are to enable students to...

- a.) To develop clear understanding of various aspects of environment this includes ecosystem, biodiversity, and conservation of biodiversity, Indian hotspots, endangered flora and fauna of India.
- b.) It also develops an attitude of concern for the environment and acquiring skills to help the concerned individuals in identifying and solving environmental problems.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Locturo	Tutorial	Practical	Credits	The	eory	Prac	ctical	Total
Lecture	Tutorial			Internal	External	Internal	External	Total
2			2	50/18	50/17			100/35

Detailed Syllabus:

Sr.	Contents	Hours					
1	Introduction to environmental studies:	02					
	Multidisciplinary nature of environmental studies; components of environment:						
	atmosphere, hydrosphere, lithosphere, and biosphere.						
	• Scope and importance; Concept of sustainability and sustainable development;						
	Brief history of environmentalism.						

Page 14 of 20

	Natural Resources:	10
	Land resources: Minerals, soil, agricultural crops, natural forest products, medicinal plants,	
	and forest-based industries and livelihoods; Land cover, land use change, land degradation,	
	soil erosion, and desertification; Causes of deforestation; Impacts of mining and dam	
	building on environment, forests, biodiversity, and tribal communities.	
	Water resources: Natural and man-made sources; Uses of water; Over exploitation of	
	surface and ground water resources; Floods, droughts, and international & interstate	
	conflicts over water.	
	Energy resources: Renewable and non-renewable energy sources; Use of alternate energy	
	sources; Growing energy needs; Energy contents of coal, petroleum, natural gas and	
	biogas; Agro residues as a biomass energy source.	
	• Case studies: Contemporary Indian issues related to mining, dams, forests, energy,	
	etc (e.g., National Solar Mission, Cauvery River water conflict, Sardar Sarovar dam,	
	Chipko movement, Appiko movement, Tarun Bharat Sangh, etc)	
3	Global Environmental Issues and Policies	10
	Causes of Climate change, Global warming, Ozone layer depletion, and Acid rain, Impacts	
	on human communities, biodiversity, global economy, and agriculture.	
	International agreements and programmes: Earth Summit, UNFCCC, Montreal and Kyoto	
	protocols, Convention on Biological Diversity (CBD), Ramsar convention, The Chemical	
	Weapons Convention (CWC), UNEP, CITES, etc.	
	Sustainable Development Goals: India's National Action Plan on Climate Change and its	
	major missions.	
	Environment legislation in India: Wildlife Protection Act, 1972; Water (Prevention and	
	Control of Pollution) Act, 1974; Forest (Conservation) Act 1980; Air (Prevention & Control	
	of Pollution) Act, 1981; Environment Protection Act, 1986; Scheduled Tribes and other	
	Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006.	
	Human Communities and the Environment:	08
	Human population growth: Impacts on environment, human health, and welfare; Carbon	
	footprint.	
	Resettlement and rehabilitation of developmental projects affected persons and	
	communities, relevant case studies.	
	Environmental movements: Chipko movement, Appiko movement, Silent valley movement,	
	Bishnois of Rajasthan, Narmada Bachao Andolan, etc.	
	Environmental justice: National Green Tribunal and its importance.	
	Environmental philosophy: Environmental ethics; Role of various religions and cultural	
	practices in environmental conservation.	
	Environmental communication and public awareness: case studies (e.g., CNG vehicles in	
	Delhi, Swachh Bharat Abhiyan, National Environment Awareness Campaign (NEAC),	
	National Green Corps (NGC) "Eco-club" programme, etc.)	

Reference Books:

1	Ecology - Principles and Applications by J.L. Chapman & M.J. Reiss. (2008) (2nd Ed.) Cambridge
	University Press, U.K. (ISBN: 978-0-521-68920-5)
2	Ecology and Environment by P.D. Sharma. (2010). (10th Ed.) Rastogi Publications, Meerut (India).
	(ISBN: 978-81-7133-905-1)
3	Elements of Ecology by Thomas Smith & Robert Smith. (2007) (6th Ed.) Dorling Kindersley Press.
	(South Asia). (ISBN: 81-317-1557-4)

Page 15 of 20

- 4 Fundamentals of Ecology by Eugene Odum& Gray Barrett. (2009) (5th Ed.) Cengage Learning & Nelson Education Press. (ISBN: 978-81-315-0020-0)
- **5** Groom, Martha J., Gary K. Meffe, and Carl Ronald Carroll. Principles of Conservation Biology. Sunderland: Sinauer Associates, 2006.

6 Raven, P.H., Hassenzahl, D.M. & Berg, L.R. 2012. Environment. 8th edition. John Wiley & Sons.

- 7 Rosencranz, A., Divan, S., & Noble, M. L. 2001. Environmental law and policy in India. Tripathi 1992.
- 8 Singh, J.S., Singh, S.P. and Gupta, S.R. 2014. Ecology, Environmental Science and Conservation. S. Chand Publishing, New Delhi.

Supplementary learning Material:

- 1 SWAYAM (https://swayam.gov.in/)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Field trip / Industrial visit / sample collection/ data collection etc
- 4. Case study
- 5. Group Discussion
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dist	tributio	on of T	heory N	larks i	n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	E	C	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage				
CO-1	Students will gain of in-depth knowledge on natural processes and	10				
	resources that sustain life and govern economy.					
CO-2	Students will acquire critical thinking for environmental protection, and	30				
	sustainable development.					
CO-3	Students will develop attitude for active participation in solving current					
	environmental problems and preventing the future ones.					
CO-4	Students will adopt sustainability as a practice in life, society, and	30				
	industry.					

Page 16 of 20

Curriculum Revision:						
Version:	1.0					
Drafted on (Month-Year):	May 2023					
Last Reviewed on (Month-Year):	June 2023					
Next Review on (Month-Year):	April 2024					

Page 17 of 20

Effective from Academic Batch: 2023-24

Programme: B.Sc. LIFE SCIENCES (HONOURS)

Semester:

Course Code: To be given by university

I

Course Title: Organic Farming

Course Group: Skill Enhancement Course (SEC)

Course Objectives:

The objectives of this course are to enable students to...

- a) Learn significance of the holistic concept organic farming
- b) Acquaint students with cultural production practices typically employed in organic farming.
- c) Examine challenges and trends in the production, processing, and marketing of organic farm products.
- d) Introduce students to the large body of literature relating to organic agriculture practices.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course	Examination Marks (Maximum / Passing)						
Locturo	Lecture Tutorial Prac		Credits	The	eory	J/V	Total			
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total		
2			2	50/18 50/17				100/35		

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours						
1	History of alternative agricultural Development, Effects of Green revolution	15						
	organic farming. Need, concepts, definition, characteristics, and components of							
	organic farming. Relevance to modern agriculture, different eco-friendly farming							
	system, biological farming Natural farming, biodynamic farming, permaculture,							
	regenerative agriculture, and Zero Budget farming. Organic nutrient sources and							
	their fortification, organic manures, methods of composting. Green manures: bio							
	fertiliser types, methods of application, benefits and limitations.							

Page 18 of 20

2	Nutrient use in organic farming-scope and limitations. Nutrient management in	15						
	organic farming. Organic ecosystem and their concepts. Choice of crops and							
	varieties in organic farming, crop rotations, need and benefits, multiple cropping.							
	Fundamentals of insect, disease and weed management under organic mode of							
	production-cultural-biological methods-nonchemical pest & disease							
	management.							
	Initiatives taken by the central and state governments, NGOs, and other							
	organizations for promotion of organic agriculture in India							

Reference Books:

- **1** Tiwari, V.N., Gupta, D.K., Maloo, S.R and Somani, L.L. 2010. Natural, organic, biological, ecological, and biodynamic farming. Agrotech Publishing Academy, Udaipur. 420p.
- **2** Mukund Joshi and Prabhakarasetty, T.K. 2006. Sustainability through organic farming. Kalyani publishers, New Delhi. 349p.
- **3** Balasubramanian, R., Balakishnan, K and Siva Subramanian, K. 2013. Principles and practices of organic farming. Satish Serial Publishing House. 453p.
- **4** Arun K. Sharma. 2002. A Handbook of organic farming. Agrobios, India. 627p.

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distr	ibution of	f Theor	y Mark	s in %	R : Remembering; U : Understanding; A :	
R U A N E C				Е	Applying;	
20	20	20	10	10	20	N: Analysing; E: Evaluating; C: Creating

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students will get knowledge of the historical, biological, and ecological	50
	basis for organic farming including crop and livestock management.	

Page 19 of 20

CO-2	Students will	develop	critical	thinking	with	а	systems	approach	to	50
	agriculture usi	ng case s	tudies as	s working	examp	ole	s of farmi	ing system	s.	

Curriculum Revision:	
Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 20 of 20