

COURSE STRUCTURE

(Choice Based Credit System)

B. Sc. LIFE SCIENCES (BIOCHEMISTRY, MICROBIOLOGY BIOTECHNOLOGY,)

Effective from Academic Year: 2023-2024

	Faculty Name:	SCIENCE		
ľ	Programme Name:	B. Sc. LIFE SCIENCES (Biochemistry/Microbiology/Biotechnology)		
Y	Semester:	I Acade	emic Batch:	2023-24

Course Group	Board of Studies / Faculty	Course Code	Course Name	Cr	Τe	eachin	g Sch	eme	Evalu	ment/ ation pe	Exa Dura	ernal am ation rs.)	INT(T) Max./	Max./	Max./	Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	Passing	Passing	Passing	Passing
Discipline Specific Course-1	Biological Sciences		Molecules of Life	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Biological Sciences		General Microbiology	4	3	1		5	~	✓	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Cell Biology	4	3	1		5	✓	✓	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Chemical Sciences		Chemistry-I	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Humanities		English	2	2			2	~		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Microbial Techniques	2		2		2		~		2			50/18	50/17	100/35
Value Addition	Arts		National Service Scheme (NSS)	2		2		2		\checkmark		2			50/18	50/17	100/35
Course			National Cadet Corps (NCC)	2		2		2		~		2			50/18	50/17	100/35
(any one)			Sports	2		2		2		~		2			50/18	50/17	100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

DR. BASUDEB BAKSHI

Faculty Name:

SCIENCE

Programme Name:

B. Sc. LIFE SCIENCES (Biochemistry/Microbiology/Biotechnology)

Semester:

Π

Academic Batch:

2023-24

Course Group	Board of Studies / Faculty	Course Code	Course Name	Cr	Τe	achin	g Sch	eme	Assess Evalu Ty				INT(T) Max./ Passing	EXT(T) Max./	Max./	EXT(P) Max./ Passing	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	1 assing	1 assing	i assiiig	1 assing	Passing
Discipline Specific Course-1	Biological Sciences		Enzymology	4	3	1		5	\checkmark	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Biological Sciences		Microbial Physiology	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Inheritance Biology	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Chemical Sciences		Chemistry-II	4	3	1		5	\checkmark	\checkmark	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Interdiscipl inary		Environmental Studies	2	2			2	✓		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Organic Farming	2	2			2	✓		2		50/18	50/17			100/35
Value Addition Course	FCML		Liberal Arts	2		2		2		~		2			50/18	50/17	100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

DR. BASUDEB BAKSHI

2

Faculty Name:	SCIENCE		
Programme Name:	B. Sc. LIFE SCIENCES (Biochemistry/Microbiology/Biotechnology)		
Semester:	III	Academic Batch:	2023-24

Course Group	Board of Studies / Faculty	Course Code	Course Name	Cr	Τe	achin	g Sch	eme	Assess Evalu Ty	,	Ex	ernal am ation rs.)	INT(T) Max./	Max./	Max./	EXT(P) Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	Passing	Passing	Passing	Passing
Discipline Specific Course-1	Biological Sciences		Techniques in Biochemistry	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-2	Sciences		Microbial Ecology & Diversity	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course-3	Biological Sciences		Developmental Biology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		DNA Structure Function and Repair	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Biological Sciences		Environmental Pollution	2	2			2	✓		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Bioinstrumentation-I	2	2			2	~		2		50/18	50/17			100/35
Value Addition Course	FCML		Indian Constitution	2	2			2	~		2		50/18	50/17			100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

UNIVERSITY
Acgle: Charutae Midya Mandal (Eset) 1945

Faculty Name: SCIENCE

IV

B. Sc. LIFE SCIENCES (Biochemistry/Microbiology/Biotechnology)

Semester:

Programme Name:

Academic Batch:

Batch: 202

2023-24

Course Group	Board of Studies / Faculty Ownership	Course Code	Course Name	Cr	Te	achin	g Sch		Assess Evalu Ty	'	Exa	ation	INT(T) Max./ Passing	Max./	INT(P) Max./ Passing	Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	0	0	0	0	Passing
Discipline Specific Course- 1	Biological Sciences		Metabolism of Carbohydrates & Lipids	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 2	Biological Sciences		Microbial Genetics	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 3	Biological Sciences		Phytochemistry and Pharmacognosy	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		Gene Expression and Regulation	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Ability Enhancement Course	Biological Sciences		Fundamentals of Biostatistics	2	2			2	~		2		50/18	50/17			100/35
Skill Enhancement Course	Biological Sciences		Bioinstrumentation-II	2	2			2	~		2		50/18	50/17			100/35
Value Addition Course	Interdiscipl inary		Wildlife Conservation	2	2			2	~		2		50/18	50/17			100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

Faculty Name:	SCIENCE		
Programme Name:	B. Sc. LIFE SCIENCES (Biochemistry/Microbiology/Biotechnology)		
Semester:	V	Academic Batch:	2023-24

Course Group Stud Fac Owne	Board of Studies / Faculty	Course Code	Course Name	Cr	Te	achin	ıg Sch	eme	Assess Evalu Ty	-	Ex	ation	INT(T) Max./ Passing	EXT(T) Max./ Passing	Max./	Max./	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	rassing	rassing	rassing	rassing	Passing
Discipline Specific Course- 1	Biological Sciences		Metabolism of Amino acids & Nucleotides	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 2	Biological Sciences		Environmental Microbiology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 3	Biological Sciences		Basic Pharmacology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Elective	Biological Sciences		Clinical Biochemistry	4	3	1		5	~	✓	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		Genetic Engineering	4	3	1		5	✓	~	2	2	50/18	50/17	25/9	25/9	150/53
Skill Enhancement Course	Biological Sciences		Introduction to Bioinformatics	2	2			2	~		2		50/18	50/17			100/35
#T - Theory D				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

CVM UNIVERSITY	

Faculty Name:	SCIENCE
Programme Name:	B. Sc. LIF

VI

B. Sc. LIFE SCIENCES (Biochemistry/Microbiology/Biotechnology)

Semester:

Academic Batch:

2023-24

Course Group	Board of Studies / Faculty	Course Code	Course Name	Cr	Τe	eachin	ıg Sch	eme	Assess Evalu Ty		Dura	am	INT(T) Max./	EXT(T) Max./	INT(P) Max./	EXT(P) Max./ Passing	Grand Total Max./
	Ownership				Т	Р	Tu	Cont. Hrs	Т	Р	Т	Р	Passing	rassing	rassing	rassing	Passing
Discipline Specific Course- 1	Biological Sciences		Membrane Biology & Bioenergetics	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 2	Biological Sciences		Biopharmaceuticals and Bio therapeutics	4	3	1		5	\checkmark	\checkmark	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Course- 3	Biological Sciences		Animal Biotechnology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Discipline Specific Elective	Biological Sciences		Human Genetics	4	3	1		5	✓	✓	2	2	50/18	50/17	25/9	25/9	150/53
Generic Elective	Biological Sciences		Basic Immunology	4	3	1		5	~	~	2	2	50/18	50/17	25/9	25/9	150/53
Skill Enhancement Course	Biological Sciences		Entrepreneurship Development	2	2			2	~		2		50/18	50/17			100/35
				22													

T = Theory, P = Practical, Tu = Tutorial

Name & Sign [Chairman - Board of Studies]:

DR. SHILPA GUPTE

Name & Sign [Dean / Director]:

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	I
Course Code:	To be Given by University
Course Title:	Molecules of life
Course Group:	Discipline Specific Course - 1

Course Objectives:

The objectives of this course are:

- a). To provide insight into fundamentals of structures and functions of biomolecules. Student will able to understand basic structure of enzymes and mechanism of action.
- b). It also helps to understand the properties of carbohydrates, proteins, lipids, cholesterol, DNA,

RNA, glycoproteins and glycolipids and their importance in biological systems.

c). To develop skills to determine amino acid and nucleotide sequences of proteins and DNA respectively.

Teaching & Examination Scheme:

Contact hours per week Course		Examination Marks (Maximum / Passing)				sing)		
Locturo	Tutorial	Practical	Credits	The	eory	Prac	tical	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/9	25/9	150/53

Detailed	Syllabus:	
Sr.	Contents	Hours

Page 1 of 18

11
11
11
_

List of Practicals / Tutorials:

- 1 Identification of biomolecules: Carbohydrate (Molisch's test), Protein (Biuret) 30 & lipid (Saponification
- 2 Qualitative analysis of carbohydrates: Molisch's test, Iodine test, Benedict's test,

Page 2 of 18

Fehling's test, Cole's test, Barfoed's test, Saliwanoff's test, Rapid furfural test, Osazone test, Mucic acid test, Inversion test.

- **3** Qualitative analysis of proteins: Precipitation test, Mercuric nitrate test, Lead acetate test, Sulphosalicyllic test, Potassium ferricyanide test, Tannic acid test, Alcohol test, Heller's test, Ammonium sulphate test.
- **4** Qualitative analysis of amino acids: Colour reactions, Biuret test, Ninhydrin test, Millon's test, Arginine test (Sakaguchi test), Xanthoproteic test, Hopkin's Cole test, Ehrlich test, Nitroprusside test.
- **5** Qualitative analysis of fat: Test for oil, Solubility test, Dichromate test, Emulsion test, Absorption test, Glycerol test, Acid value of oil, Saponofication test, Iodine test, Borax test, and Liebermann-Burchard test.
- **6** Estimation of protein by Biuret method.
- 7 Estimation of carbohydrate by DNS method.
- 8 Estimation of DNA by DPA method.

Reference Books:

- **1** Biochemistry by Lubert Stryer, W. H. Freeman and Company. 4th /6th edition, 2000/2004 Hardback, ISBN 0716720094
- 2 Fundamentals of Biochemistry: Life at the Molecular Level, by D. Voet, J. G. Voet, and C. Pratt, 3rd Edition, John Wiley and Co John Wiley & Sons, Inc., New York, , 2008 ISBN : 0471214957; 9780471214953
- **3** Principles of Biochemistry by Albert Lehninger, W.H. Freeman & Company; 3rd edition (February 2000), ISBN-10: 1572591536
- **4** Harper's Biochemistry: Harper, 27th Edition, McGraw-Hill Publishing Co; Robert K. Murray, Daryl K. Granner, Victor W. Rodwell, 2006 ISBN-10: 0071461973
- 5 Outlines of Biochemistry by Conn E E , Stumps P E and and Doi, R.H., John Wiley and sons, Singapore, 5th Edition – 2001
- **6** Principles of Biochemistry by Horton,Morgan, Secrimgeour,Perry, Rawn , pearson International edition 4th edition ISBN 978-1-4058-2573-3
- **7** Harper's Biochemistry: R. K. Murray and others. Appleton and Lange, Stanford. ISBN: 0838536905 25 edition (pb) 2000
- **8** Plummer, D.T. (1987). 3rd ed. An introduction of Practical Biochemistry. McGraw Hill Book Co.

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- 3 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Sample collection/ data collection etc
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Page 3 of 18

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %		n %	R : Remembering; U : Understanding; A : Applying;			
R	U	Α	N	Ε	С	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course	Course Outcomes (CO):					
Sr.	Course Outcome Statements	%weightage				
CO-1	Understand chemical and physical characters of biomolecules to be known to the students.	25				
CO-2	Learn the structure, classification and functions of Carbohydrates, Lipid and Protein.	25				
CO-3	Different protein structure, their physical chemical properties	25				
CO-4	Learn the structure, classification and functions of Nucleic acid and	25				
	enzyme.					

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 4 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	I
Course Code:	To be Given by University
Course Title:	General Microbiology
Course Group:	Discipline Specific Course - 2

Course Objectives:

The objectives of this course are:

- a). To give students comprehensive knowledge of the historical aspects and development of Microbiology.
- b). To make the students to understand the different aspects to the classification of Prokaryotes.
- c). Students will understand the in-depth knowledge on the structure and functions of prokaryotic And eukaryotic cells.
- d). Student will learn properties of viruses and exhaustive knowledge of fungi. Further it gives insight into hands on training of basic microbial techniques which will give the student a strong base in scope of microbiology.

Teaching & Examination Scheme:

Contact hours per week Course		Examination Marks (Maximum / Passing)				sing)		
Locturo	Tutorial	Practical	Credits	The	eory	Prac	ctical	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/9	25/9	150/53

Detailed Syllabus:

Sr.	Contents	Hours		
1	Historical foundation of Microbiology	12		
	• Establishment of microbiology as a discipline: Spontaneous generation vs			
	biogenesis, Contributions of Anton von Leeuwenhoek, Louis Pasteur,			
	Robert Koch, Joseph Lister, Alexander Fleming. Role of microorganisms in			
	fermentation, Germ theory of disease, Development of various			
	microbiological techniques and golden era of microbiology.			
	• Development of the field of soil microbiology: Contributions of Martinus W.			
	Beijerinck, Sergei N. Winogradsky, Selman A.Waksman. Establishment of			
	fields of medical microbiology and immunology through the work of Paul			
	Ehrlich, Elie Metchnikoff, Edward Jenner.			

Page 5 of 18

2	Classification and Prokaryotic cell structure	11			
	Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three				
	kingdom classification systems and their utility. Classification in brief as				
	per Bergey's Manual of Systematic Bacteriology.				
	• Overview of prokaryotic cell structure, prokaryotic cell membranes,				
	prokaryotic cytoplasm, cytoplasmic inclusion bodies, cell wall, ribosome,				
	and capsule. Bacterial endospores, exospores, and cyst. Bacterial motility.				
	Bacterial chromosome, nuclear material, plasmid and episomes.				
3	3 Eukaryotic cell structure and function				
	Overview of eukaryotic cell structure, Eukaryotic membranes, Cytoplasmic				
	matrix, Organelles of the biosynthetic-secretory and endocytic pathways,				
	Ribosomes, Mitochondria, Chloroplast, Nucleus, Structures external to the				
	plasma membrane, Comparison of prokaryotic and eukaryotic cells.				
4	Viruses, Other Acellular Agents and Fungi	11			
	• Introduction to viruses, General properties of viruses, Viral reproduction,				
	Cultivation of viruses, Virus purification and assays, Principles of virus				
	taxonomy, Viroids and Virusoids, Prions. Lytic and lysogenic cycles.				
	• Introduction of fungi, Distribution, Structure, Nutrition and metabolism,				
	Reproduction, Characteristics of fungal divisions and Economic				
	significance.				

List of Practicals / Tutorials:

1	Preparation and sterilization of culture media for bacterial cultivation
2	Study of different shapes of bacteria using permanent slides/ pictographs
3	Simple staining: Monochrome staining and Differential: Gram's staining
4	Determination of motility of bacteria by (i) Hanging drop method (ii) Agar stab method
5	Isolation of bacteria [Streak plate, spread plate, pour plate, serial dilution]
6	Determination of CFU count.
7	Study of the following fungi by preparing temporary mounts: <i>Rhizopus</i> and <i>Aspergillus</i> .

Reference Books:

1	Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book
	Company.
2	Dubey RC and Maheswari DK. A Text book of Microbiology. (2005).S. Chand & Company Ltd.,
	New Delhi.
3	Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition.
	Pearson Education.
4	Stanier RY, Ingraham JL, Wheelis ML, and Painter PR. (2005). General Microbiology. 5th
	edition. McMillan.
5	Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T.Brown Publishers. 3.
	Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition.
6	Willey JM, Sherwood LM, and Woolverton CJ. (2008). Prescott, Harley and Klein's
	Microbiology. 7th edition. McGraw Hill Higher Education.
7	Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition.
	Pearson Education limited.
8	Madigan MT, Martinko JM and Parker J. (2009). Brock Biology of Microorganisms. 12th
	edition. Pearson/Benjamin Cummings.

Supplementary learning Material:

1 SWAYAM (<u>https://swayam.gov.in/</u>)

Page 6 of 18

- 2
 NPTEL (<u>https://nptel.ac.in/</u>)

 3
 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit / sample collection/ data collection etc
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Dis	Distribution of Theory Marks in %					R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Acquire knowledge about history and scope of Microbiology.	25
CO-2	Understand various methods of microbial classification.	25
CO-3	Differentiate prokaryotic and eukaryotic cell structure and functions.	25
CO-4	Learn about viruses and nutritional requirements and modes of	25
	reproduction in fungi.	

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	May 2023			
Last Reviewed on (Month-Year):	June 2023			
Next Review on (Month-Year):	April 2024			

Page 7 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	Ι
Course Code:	To be given by university
Course Title:	Cell Biology
Course Group:	Discipline Specific Core -3

Course Objectives:

The objectives of this course are to enable students to...

- a) Understand structure and function of prokaryotic and eukaryotic cells.
- **b)** Learn structure and functions of cell and its organelles.
- c) Gain knowledge of synthesis and function of proteins, membrane structure and functions of cell.
- **d)** Provide knowledge of cellular communication, division of cell and chromosomal separation in different stages of cell cycle.

Teaching & Examination Scheme:

	Contact hours per week			Course	Examination Marks (Maximum / Passing)						
La	atura	Tutorial	Futorial Practical		ial Practical Credit		The	eory	J/V	/P*	Total
Le	ecture	Tutorial	Practical		Internal	External	Internal	External	Total		
	3	0	2	4	50/18	50/17	25/9	25/9	150/53		

* **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:					
Sr.	Contents	Hours			
1	Cell Structure and Function:	12			
	Discovery, Origin of Cell and Cell theory, Cell as basic unit of life (Plant and Animal				
	Cell structure, Comparison between plant and animal cells), Difference between				
	Prokaryotic and Eukaryotic cells.				
	Structure and its function of Plasma membrane (Three dimensional), Chemical				
	composition of biological membranes, Membrane models, Fluid mosaic membrane				
	model.				
	Cell wall, distribution, chemical composition, functions, and variations in				
	prokaryotic and eukaryotic cells (primary and secondary wall), Glycocalyx, Cell-				
	cell interactions/ Junctions, pit connections in plants and animals.				

Page 8 of 18

2	Cytoskeleton structure and functions:	11
	Overview of the Major Functions of Cytoskeleton. Microtubules: Structure,	
	Composition and functions, Composition, Assembly and Disassembly, Structure,	
	composition and functions of Centrioles and Basal bodies, Microtubules in Cilia and Flagella.	
	Microfilaments and Intermediate filaments: Structure and Composition;	
	Endoplasmic reticulum: Structure, function including role in protein segregation.	
	Golgi complex: Structure, biogenesis and functions including role in protein	
	secretion.	
3	Structure of Nucleus	11
	Nuclear membrane, nuclear pore, nucleolus, chromatin, structure of nucleic acids.	
	Mitochondria – Ultra structure and function; Biogenesis of mitochondrial	
	Genomes, Chloroplast – Ultra structure and function, Genome biogenesis.	
	Ribosomes detailed structure and its function with involvement in protein	
	synthesis. Vacuoles, Lysosomes structure and functions.	
4	Cell cycle and Cell division	11
	The key roles of mitosis and meiosis during the life cycle. Types of cell divisions.	
	Different Stages of mitosis and meiosis, highlighting similarities and differences.	
	Significance of Mitosis and Meiosis.	
	Overview of the Cell cycle and its control. Programmed Cell Death: Apoptosis-	
	intrinsic and extrinsic apoptotic pathways, necrosis, necroptosis, and autophagy.	

Reference Books:

- 1 Cell Biology by C.B. Powar. (Reprinted-2004) Himalaya Publishing House, Mumbai.
- **2** Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P.S. Verma and V.K. Agarwal (Reprinted -2007) Pub. S. Chand& Company Ltd. Ram Nagar, New Delhi-110055.
- **3** De Roberts E. D. P. and De Roberts E. M. F. 2010. Cell and Molecular Biology. Walters Kluwer, 8th edition.
- 4 Albert B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P. 2014. Molecular biology of the cell. 6th edition, Garland Science, Taylor & Francis Group. ISBN: 0-8153-3218-1.
- **5** Geoffrey M. Cooper and Robert E. Hassman. 2018. The Cell: A molecular approach. Sinauer Associates Inc, 8th edition, ISBN:0-87893-214-3.

List of Practicals / Tutorials:

- 1 Structure of cell organelles adopting preparations/charts/models Mitochondria; Chloroplast; Ribosomes; Endoplasmic reticulum; Nucleus
- 2 Squash preparation of onion flower buds for the study of meiosis stages.
- **3** Squash preparation of onion root tip for the study of mitosis stages.
- 4 Vital staining of mitochondria.
- **5** Trypan blue exclusion test for cell viability.
- **6** Measurement of the size of cells using micrometry.
- 7 Preparation of Buccal smear and Identification of Barr Body.
- 8 Localization of chloroplast.

Page 9 of 18

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in 30

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- 3 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying.
R	U	Α	Ν	Ε	С	N: Analysing; E: Evaluating; C: Creating
20	20	20	10	10	20	

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage		
CO-1	Students will understand the structure and function of various cellular	25		
	organelles and its significance.			
CO-2	Students will learn how cellular components work together to carry out life	25		
	functions.			
CO-3	Students will be acquiring a better understating on how cellular processes 25			
	enable organism to meet their basic needs.			
CO-4	Students will get knowledge of program cell death and the cellular	25		
	components underlying mitotic cell division.			

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May - 2023
Last Reviewed on (Month-Year):	June - 2023
Next Review on (Month-Year):	April - 2024

Page 10 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	Ι
Course Code:	To be Given by University
Course Title:	Chemistry–I
Course Group:	Generic Elective

Course Objectives:

The objectives of this course are:

- a). To educate the students to develop the knowledge of the fundamental principles of chemistry and to enable understanding of the nomenclature, structural, isomerism, stereochemistry of organic compounds.
- b). Student will understand acid-base concept and solution behaviour. It provides the fundamental knowledge of the properties of transition metals and basics of coordination chemistry.

Teaching & Examination Scheme:

Contact hours per week			Course	Course Examination Marks (Maximum / Pa				
Locturo	Tutorial	Practical	Credits	The	eory	Practical Te		Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/9	25/9	150/53

Detailed Syllabus:						
Sr.	Contents	Hours				
1	IUPAC nomenclature Introduction of organic compound and their classification. Physical Properties and systemic IUPAC nomenclature of different class of organic compounds including alkanes, alkenes, alkynes, cycloalkanes, bicyclic, spiro, aromatic and heterocyclic compounds.	12				
2	Stereochemistry Elements of symmetrycentre, plane and axis of symmetry. Isomers and classification of isomers. Configuration, conformational isomers. Separation of enantiomers. Absolute configuration (R and S). Conversion of projection formulas. Stereochemistry of compounds containing two asymmetric carbon atoms. Conformations around a C-C bond in acyclic compounds. Structure of cycloalkanes, Cyclohexane conformations. Stereochemistry of disubstituted cyclohexanes.	11				

Page 11 of 18

3	Ionic equilibrium in aqueous solutions	11					
	Acids & Bases, Arrhenius theory of Acids and Bases, The Lowry – Bronsted Concept,						
	Strength of Acids and Bases, The Lewis concept, pH Scale, pH and Buffers Structure						
	and physical properties of water, Self-Ionization of water, Hydrolysis, Buffer						
	Solutions, Indicator, Sparingly Soluble Salts, Common ion effect, Selective						
	Precipitation, acid-base titration and use of indicators, mathematical treatment of						
	acid-base titrations.						
4	Fundamental concept of coordination chemistry	11					
	Position of d-block elements in the periodic table, Electronic configuration and Classification of d-block elements in 3d, 4d, 5d and 6d series. Definition of coordination compounds Werner's theory, Co-ordination number, Classification of ligands, Nomenclature of co-ordination compounds, Chelate, chelating ligand and Chelation, Uses of Chelates.						
List	of Practicals / Tutorials:						
1	Volumetric analysis: Determination of concentration of Strong acid [HCl] and weak acids [oxalic acid/Acetic acid] by titrating against strong base [NaOH].						
2	Volumetric analysis: Determination of concentration of transition metal salts (Cu, Ni, Zn) by titrating against EDTA.	30					
3	Qualitative Analysis : Identification of Organic substance:Salicylic acid, Cinnamic acid, Benzoic acid, α-Naphthol, β-Naphthol, o-nitroaniline, m-nitroaniline, p-nitroaniline, Naphthalene, m-dinitrobenzene, Anthracene.						
Refe	erence Books:						
1	Morrison R. T. & Boyd R. N., Organic chemistry (6th edition).						
2	IUPAC nomenclature by Robert M. Silverstein.						
3	Stereochemistry by P. S. Kalsi.						
4	A text book of organic chemistry by Arun Bahl& B. S. Bahl, 16 th Edition						
5	Principles of Physical chemistry by B. R. Puri, L. R. Sharma and M. S. Pathania, 41 th Ed.						
•							
6	Biophysical chemistry, Principles and Techniques by Upadhyay, Upadhyay and Nath.						
	Biophysical chemistry, Principles and Techniques by Upadhyay, Upadhyay and Nath.Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley						

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit

Page 12 of 18

- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):									
Sr.	Course Outcome Statements	%weightage							
CO-1	Understand the fundamental principles of organic chemistry that	25							
	include chemical bonding								
CO-2	Learn nomenclature, structural of various classes of compounds	25							
CO-3	Develop concept of isomerism, stereochemistry, Chirality	25							
CO-4	Acquire concept of Acidity, Alkalinity, applications of indicator	25							

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 13 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	Ι
Course Code:	To be Given by University
Course Title:	English
Course Group:	Ability Enhancement Course

Course Objectives:

The objectives of this course are:

a). English is now used almost exclusively as the language of science. By learning a single language,

scientists around the world gain access to the vast scientific literature and can communicate with

other scientists anywhere in the world.

b). Students will learn about various scientific terms and will be able to enhance skills. Verbal and

Non-verbal communication, writing skills, reviewing will be remedy for the students to get better

and better subjectively.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				sing)
Lecture	Tutorial	Dreast as l	Dreatical Credits		Theory		Practical	
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
2			2	50/18	50/17			100/35

Sr.	Contents	Hours
1	Vocabulary and Presentation Skill Development	15
	 Listening Skills, Speaking Skills, Reading Skills and Writing Skills (LSRW) Defining the Purpose & how to make an effective presentation (MS PowerPoint) Outline preparation Review / Content / Précis writing. 	
2	 Introduction and Language of Communication Theory of Communication, Types and Modes of Communication Verbal and Non-verbal (Spoken and Written) Personal, Social and Business Barriers and Strategies; Intra-personal, Inter-personal and Group communication, Expressing opinions 	15

Page 14 of 18

Reference Books:

- 1 Fluency in English Part II, Oxford University Press, 2006.
- 2 Business English, Pearson, 2008.
- **3** Language, Literature and Creativity, Orient Blackswan, 2013.
- 4 Language through Literature (forthcoming) ed. Dr. Gauri Mishra, Dr Ranjana Kaul, Dr Brati Biswas

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- **3** e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (https://diksha.gov.in/)

Pedagogy:

1. Audio -visual aids, power point presentation, videos, animation, models etc.

2. Continuous assessment based on quiz, assignment, seminar.

- **3.Group Discussion**
- 4. Student feed back
- 5. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

buggested opeented for dable with Marks (Theory) (newsed bloom 5 Taxonomy).						
Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	N	E	C	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the preparation of Well-organized presentation slides	50
CO-2	Improve presenting skill	50

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 15 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences (BC/MI/BT)
Semester:	I
Course Code:	To be Given by University
Course Title:	Microbial Techniques
Course Group:	Skill Enhancement Course

Course Objectives:

The objectives of this course are:

- **a)** Ability to apply the tools and techniques of Microbiology in conducting research.
- **b)** Acquire basic skills in aseptic techniques, microscopy.
- c) Learn different staining techniques, microbial cultivation, and enumeration techniques.
- d) Prepare the student for advance studies in the subject of Microbiology.

Teaching & Examination Scheme:

Contact hours per week Co			Course	Course Examination Marks			rks (Maximum / Passing)		
Locturo	Tutorial	Practical	Credits	The	eory	Prac	ctical	Total	
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total	
		2	2			50/18	50/17	100/35	

Deta	ailed Syllabus:	
Sr.	Contents	Hours
1	Introduction to laboratory equipment: (Principle and Applications)	15
	Microscope, Autoclave, Hot air oven, Incubator, pH meter, biological safety cabinet.	
	Cleaning and sterilization of glassware.	
	Sterilization techniques – Chemical, UV, autoclaving, and membrane filtration.	
	Basic microbe handling techniques.	
	Cryo-stock and glycerol stock preparation, maintenance, and Preservation of Bacteria.	
	Special Staining Techniques: Endospore staining, Acid fast staining, Capsule staining,	
	Metachromatic granules staining, cell wall staining.	

Page 16 of 18

2	Media preparation and cultivation of microbes	15
	Liquid media- Peptone water, Nutrient broth; Solid media- Nutrient agar (Agar slant, Agar	
	plate); Enriched Medium- Blood agar; Differential medium - Mac Conkey agar;	
	Enrichment Medium - Selenite F broth; Selective medium- EMB, MSA.	
	Isolation and cultivation of bacteria.	
	Preparation of culture media for cultivation of yeast and fungi (spoiled	
	bread/fruits/vegetable).	
	Isolation of bacterial flora of skin by swab method.	
	Determination of microbiological quality of milk sample by MBRT.	

Reference Books:

- 1 Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book Company.
- 2 Murphy, D.B. Fundamental of Light Microscopy & Electron Imaging.1st Edition.Wiley-Liss.(2001).
- **3** Stanier RY, Ingraham JL, Wheelis ML, and Painter PR. (2005). General Microbiology. 5th edition. McMillan.

Supplementary learning Material:

- **1** SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- 3 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

1.Audio -visual aids, power point presentation, videos, animation, models etc.

- 2. Continuous assessment based on quiz, assignment, seminar.
- **3.Group Discussion**
- 4. Student feed back
- 5.. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %		n %	R : Remembering; U : Understanding; A : Applying;			
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course	Course Outcomes (CO):					
Sr.	Course Outcome Statements	%weightage				
CO-1	Students will familiarize with various lab equipments relevant to microbiological work. They will learn different types of staining to observe microbes and their cell components.	50				
CO-2	Students will learn to prepare different media, cultivation method and their applications.	50				

Page 17 of 18

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Page 18 of 18

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	II

- **Course Code:** To be Given by University
- Course Title: Enzymology

Course Group: Discipline Specific Course – 1

Course Objectives:

The objectives of this course are to enable students....

- a). To understand the Enzyme and their classification, structure of enzyme and their action & purification.
- b). The course will teach the enzyme kinetics, mechanisms of enzyme catalysis and Methods to study enzymes and its mechanisms of regulations using suitable examples of enzymes in the cell.

Teaching & Examination Scheme:

Contact hours per week Course			Examination Marks (Maximum / Passing)					
Locturo	Tutorial	Practical	Credits	The	eory	Prac	ctical	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/9	25/9	150/53

Detail	ed Syllabus:	
Sr.	Contents	Hours
1	An Introduction to enzymes: What are enzymes, brief history of enzymes,	12
	concepts of coenzymes, cofactors, holoenzymes, apoenzyme, activators, inhibitors,	
	regulatory enzymes. Specificity of enzyme (active site) and models for enzyme	
	specificity (Lock and key, induced-fit and transition-state stabilization hypothesis).	
	Enzyme classification: IUB enzyme classification.	

2	Methods for isolation and purification of enzymes:- Methods for homogenization of tissue, Method for protein purification depend on size (centrifugation, gel filtration, dialysis and ultrafiltration), Method for protein purification depend on polarity (ion-exchange chromatography, electrophoresis, isoelectric focusing, hydrophobic interaction chromatography), Method for protein purification depend on changes in solubility (change in pH, change in ionic strength, decrease in dielectric constant), Method for protein purification depend on specific binding sites or structural features (affinity chromatography, affinity elution, dye-ligand chromatography, immunoadsorption chromatography and covalent chromatography).	11				
3	Enzyme kinetics:- Concept of activation energy for uncatalyzed and catalyzed (chemical and enzyme) reaction. Type of reaction (zero-order, first-order and second order). Unisubstrate enzyme kinetics; factors affecting the rate of enzyme catalyzed reactions forms and derivation of Michaelis-Menten equation; significance of V_{max} , K_m and different plots (Lineweaver-Burk, Eadie-Hofstee and Hanes plots). Enzyme inhibition – type of inhibition (reversible and irreversible), competitive, non-competitive, mixed, partial, substrate, and allosteric.	11				
4	Mechanism of Enzyme Action and immobilization of enzymes:	11				
	Enzyme mechanisms: Factors affecting catalytic efficiency, Mechanism of Lysozyme, Chymotrypsin, Carboxypeptidase, Aspartate Transcarbomylase. Allosteric enzymes and sigmoidal kinetics: Protein ligand binding, Co-operativity, MWC & KNF models, Immobilized enzymes:- Methods of immobilization, use of immobilized enzymes, advantage and disadvantage of immobilized enzymes. Industrial applications of enzymes.					
List	of Practicals / Tutorials:					
1	Estimation of reducing sugar by DNS method					
2	Determination of invertase activity					
3	Effect of enzyme concentration on enzyme catalyzed reaction					
4	4 Effect of pH on enzyme catalyzed reaction					
5	5 Effect of temperature on enzyme catalyzed reaction					
6	6 Effect of time on enzyme catalyzed reaction					
 7 Effect of substrate concentration on enzyme catalyzed reaction and determination of Km and Vmax of enzyme 8 Demonstration of immobilization of enzyme/whole cell using appropriate method 						
Refe	erence Books:					

1	Fundamentals of enzymology: Nicholason Price & Stevens ISBN – 0-19850-229-X.
2	Enzymes: Biochemistry, Biotechnology and Clinical Chemistry: Trevor Palmer, Philip L. Bonner, 2 nd edition Horwood Publishing Limited, ISBN – 978-1-904275-27-5 .
3	Biochemistry: DonaldVoet, Judith G. Voet, 4 th Edition, John Wiley & Sons, Inc., New York, 2008 ISBN –13 978-0470-57095-1
4	Fundamentals of Biochemistry:Life at the Molecular Level, D Voet, J.G Voet and C. W. Pratt. 5 th Edition John Wiley and Sons, Inc, New York, ISBN –978-1-118-91840-1 .
5	Biochemistry: Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto, Jr., LubertStryer8th Edition. W. H. Freeman and Company; ISBN–13: 978-1-4641-2610-9.
6	Textbook of Medical Biochemistry: Chatterjee M.N and Rana Shinde. 8 th Edition, Jaypee Brothers Medical Publisher PVT Ltd. ISBN – 978-93-5025-484-4 .
7	Lehninger Principles of Biochemistry: David L. Nelson, Michael M. Cox,7 th Edition. W. H. Freeman and Company. ISBN – 13: 978-1-4641-2611-6 .
8	Harpers's Biochemistry: Robert Murray, Victor Rodwell, David Bender, Kathleen M. Botham, P. Anthony Weil, Peter J. Kennelly, 28 th Edition.Mc Graw Hill Publishing Company. ISBN – 978-0-07-170197-6 .
9	Practical Enzymology: Prof. Dr. Hans Bisswanger 2 nd Edition (2011, Wiley-Blackwell) ISBN– 978-3-527-32076-9.

Sup	Supplementary learning Material:			
1	SWAYAM (https://swayam.gov.in/)			
2	COURSERA (https://www.coursera.org/)			
3	NPTEL (https://nptel.ac.in/)			
4	e-PATHSHALA (https://epathshala.nic.in/)			
5	DIKSHA (https://diksha.gov.in/)			

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit / sample collection etc
- 4. Laboratory experiments
- 5. Problem solving
- 6. Demonstration
- 7. Student feed back

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %						R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course	Course Outcomes (CO):					
Sr.	Course Outcome Statements %weightage					
CO-1	Understand the fundamental concept of enzymes and their specificity of 25					
	action and classification.					
CO-2	Understand Enzyme purification strategies from variety of sources and	25				
	to study the purity of enzymes					
CO-3	Understand the enzyme kinetics with respect to presence of Substrate,	25				
	inhibitors and activators and significance of Km, Vmax & Kcat, enzyme					
	efficiency.					
CO-4	Understand the mechanisms of different enzyme actions. Understands	25				
	the relevance of Isoenzymes and its physiological significance, enzyme					
	immobilization techniques and industrial application of enzymes.					

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	II
Course Code:	To be Given by University
Course Title:	Microbial Physiology
Course Group:	Discipline Specific Course – 2

Course Objectives:

The objectives of this course are:

- a). To educate the students to develop a clear understanding of the fundamental concepts of microbial physiology and metabolism occurring inside microbes.
- b). The students will understand nutritional classification of microbes.
- c). Students will understand pure culture techniques and methods of culturing, preservation and maintenance of microorganisms.
- d).This course will aid students to acquire skills and competence in microbiological laboratory practices.

Teaching & Examination Scheme:

Contact h	Contact hours per week		Course	Examinat	tion Marks	(Maximur	n / Passing	g)		
Locturo	Tutorial	rial Practical	utorial Drastical	Dreatical Credits		Theory		Practical		Total
Lecture	Tutorial			Internal	External	Internal	External	TOLAT		
3		2	4	50/18	50/17	25/9	25/9	150/53		

Detailed Syllabus:

Sr.	Contents						
1	Microbial Nutrition						
	Nutritional types: Requirement of nutrients for microbes and classification of						
	microorganisms based on carbon, energy and electron sources viz.						
	Autotroph/Phototroph, heterotrophy, Chemolithoautotroph,						
	Chemolithoheterotroph, Chemoheterotroph, Chemolithotroph,						
	photolithoautotroph, Photoorganoheterotroph. Primary and secondary active						
	transport; Passive and facilitated diffusion. Effect of oxygen on growth,						
	classification on the basis of oxygen requirement and tolerance (aerobic, anaerobic,						
	microaerophilic, facultative aerobe, facultative anaerobe).						

2	Media type, control and Preservation	11
	Role of macro and micro-nutrients. Components of media: Natural,	
	Synthetic, Complex, Selective media, Differential Media, Enriched and	
	enrichment media. Methods for culturing aerobic and anaerobic bacteria;	
	Colony and broth culture characteristics.	
	Physical methods of microbial control: heat, low temperature, high	
	pressure, filtration, desiccation, osmotic pressure, radiation. Chemical	
	methods of microbial control: disinfectants, types and mode of action.	
	Maintenance and preservation techniques for microorganisms (Sub	
	culturing, Oil overlay, Sand cultures, Storage at low temperature,	
	Lyophilisation, Liquid Nitrogen).	4.4
3	Microbial Growth	11
	• Growth in Microbes (growth phases, generation time, growth curve and	
	specific growth rate). Measurement of cell mass and cell number; Factors	
	affecting microbial growth; Continuous and batch cultures; details of	
	synchronous and Diauxic growth curve. Physical factors influencing growth:	
	Temperature; pH; Atmospheric Pressure; Salt Concentration. Chemical	
	factors: heavy metal (copper), surfactants. Control of Microorganisms:	
	patterns of microbial death, control of microorganism growth by antiseptics.	
4	Microbial Photosynthesis	11
	 Concept of photosynthesis and associated pigments in microbes; 	
	photosynthetic apparatus in pro and eukaryotes; anoxygenic and oxygenic	
	photosynthesis; light and dark reaction; photorespiration and its	
	significance; Effect of light, temperature; pH and CO_2 concentration on	
	photosynthesis; measurement of net photosynthetic yield. Electron	
	transport chain in photosynthetic bacteria.	

List of Practicals / Tutorials:

1	Introduction of media and its constituents for microbial growth.	
2	Different methods for isolation and maintenance of microorganisms.	
3	Isolation of microbes using differential media.	
4	To study and plot the growth curve of <i>E. coli</i> using spectrophotometric method and	
	to calculate specific growth rate and generation time.	
5	To study and plot the growth curve of <i>Aspergillus niger</i> by radial growth	30
	measurements.	
6	To study the effect of temperature of <i>Aspergillus niger</i> by dry weight method.	
7	Demonstration of the thermal death time and decimal reduction time of <i>E. coli</i> .	
8	Isolation of Photosynthetic bacteria.	
9	Preservation of bacterial cultures.	

Reference Books:

1	Moat A.G. and Foster S.W. Microbial Physiology (4th Ed.) (2004). John Wiley and Sons, New
	York.
2	Gerald Karp. Cell Biology (3rd Ed.) (2003). McGraw Hill Book Company, New York.

3	Stanier R. Y, Ingrahm J. I, Wheelis M. L and Painter P. R. General Microbiology. (5th Ed.)
	(1987). McMillan Press. UK.
4	Dubey R. C and Maheswari D. K. A Text book of Microbiology. (2005).S. Chand & Company
	Ltd., New Delhi.
5	Nelson D. L. & Cox M. M. Lehninger's Principles of Biochemistry, 4th edition. (2005). W. H.
	Freeman & Co. NY.
6	Pelczar Jr, M. J, Chan E. C. S., Krieg N R, Microbiology, (5th Ed.), (2001). McGraw Hill Book
	Company, NY.
7	Madigan M. T, Martinko J. M and Parker J. (2003). Brock Biology of Microorganisms. 10th
	edition. Pearson/Benjamin Cummings.
8	Reddy S. R. and Reddy S. M. (2005). Microbial Physiology. Scientific Publishers India.

Supplementary learning Material:

- 1 SWAYAM (<u>https://swayam.gov.in/</u>)
- 2 NPTEL (<u>https://nptel.ac.in/</u>)
- 3 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 4 DIKSHA (https://diksha.gov.in/)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit / sample collection/ data collection etc
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					%	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Design synthetic media for screening of specific culture.	25
CO-2	Describe and differentiate type of growth requirement for specific microbial culture.	25
CO-3	Describe and evaluate the growth of microorganisms and factors affecting it.	25
CO-4	Describe the microbial photosynthesis and depict the role of pigments associated with microbes.	25

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	May 2023			
Last Reviewed on (Month-Year):	June 2023			
Next Review on (Month-Year):	April 2024			

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	II
Course Code:	To be given by university
Course Title:	Inheritance Biology
Course Group:	Discipline specific course -3

Course Objectives:

The objectives of this course are to enable students to

- a) To provide a comprehensive study to develop the knowledge of Classical and modern Mendelian genetics, success of Mendel's experiment, Chromosomal theory of inheritance.
- **b)** The course will provide a foundation of the Allelic and non-allelic gene interaction along with the genetic linkage and crossing over
- **c)** It also outlines the factors and the determination of sex in various species as well as aberration of chromosome with population genetics.
- **d)** The course will prepare students for learning the mechanism of muscle contraction, Structure and types of neuron cells,

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passin				g)
Locturo	Tutorial	Practical	Credits Theory			J/V/P*		Total
Lecture				Internal	External	Internal	External	Total
3	0	2	4	50/18	50/17	25/9	25/9	150/53

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:				
Sr.	Contents	Hours		
1	Fundamentals of Genetics:	11		
	Historical developments in the field of genetics, Mendel's experimental organism			
	and its significance, Mendel's experimental design, monohybrid, di-hybrid and tri			
	hybrid crosses, Law of segregation & Principle of independent assortment, Test			
	and back crosses. Chromosomal theory of inheritance (Sutton-Boveri).			
	Applications of Mendel's Principles (Punnett square method, Forked-line method,			
	Probability method)			

2	Interaction of Genes:	11
	Allelic interactions: Concept of dominance, recessiveness, Concept of pseudo-alleles, Co-dominance, Incomplete dominance, Pleiotropy,	
	Penetrance, Expressivity (Example of each), lethal allele.	
	Non allelic interactions: Epistasis (dominant & recessive), Duplicate gene action	
	(15:1), Complementary gene action (9:7), Supplementary gene action (9:3:4),	
	Inhibitory gene action (13:3), Masking gene action (12:3:1), Polymeric gene action	
	(9:6:1), Additive gene action (1:4:6:4:1)	
3	Genetic linkage, Crossing over and Chromosomal aberrations:-	11
	Introduction, Chromosome theory of Linkage, Coupling and Repulsion phase, Types	
	of Linkage, Linkage groups and Linkage maps. Recombination of genes in a	
	chromosome crossing over, Molecular mechanism of crossing over. Genetic	
	disorders, Alteration in chromosome structure - Deletions, duplications, inversions	
	and translocations Alterations in chromosome number - Ploidy-Aneuploidy and	
<u> </u>	Euploidy.	4.0
4	UNIT IV: Sex determination and Sex linkage:	12
	Difference between Autosomes and Allosomes, Structure of X and Y chromosomes,	
	Mechanisms of sex determination, Environmental factors and Chromosome theory	
	of Sex determination: XX- XY, XX-XO, XO-XX, ZZ-ZW, ZO-ZZ system, Genic balance theory of Bridges, sex determination, Sex determination in animals (Drosophila,	
	Reptiles and Mammals,) and Plants, Barr bodies, Genetic balance theory (X/A	
	index), Fragile-X- syndrome and chromosome, sex influenced dominance, sex	
	limited gene expression, and sex linked inheritance.	
	ן ווווננע צבווב בגדו בססוטו, מווע סבא וווגבע וווובו תמונב.	

Reference Books:

- 1 Principles of Genetics (2010) 5th ed. And 6th ed., Snustad, D.P. and Simmons, M.J., John Wiley & Sons Asia, ISBN:978-0-470-39842-5.
- 2 Genetics (2000), P.S.Verma and V.K. Agarwal, S. Chand and Company. (ISBN:81-219-0262-2), New Delhi.
- **3** Genetics. P. K. Gupta, Rastogi Publications. ISBN: 81-7133-779-1. Shivaji Road Meerut, India.
- **4** Fundamentals of Genetics. (2004), B.D. Singh, Kalyani Publishers. (ISBN: 81-272-1331-4).1.
- **5** Principles of Genetics by Gardener, John Wiley & Sons, New York, USA, (ISBN 9971-51-346-3).

List of Practical

- 1Problems in different topics of Genetics Introduction to Mendelian genetics.30(I) Mendel's law of inheritance
 - a) Law of Dominance. b) Law of segregation. c) Law of Independent assortment. (II) Back Cross & Test Cross
 - a) Monohybrid back cross and test cross b) Dihybrid back crosses and test cross.
- Problem related to Interaction of genes: (a) Incomplete dominance (b) Co-dominance (c) Problems related to monohybrid cross (d) Problems related to dihybrid crosses. (e) Problem related to sex linked inheritance (f) Linkage (g) Crossing over
- **3** Variation in chromosomes structure and number by charts
- 4 Problems related to sex determination.

- **5** Pedigree charts of some common characters like blood group and color blindness
- **6** Mitotic Chromosome preparation and Karyotyping

Sup	Supplementary learning Material:				
1	SWAYAM (<u>https://swayam.gov.in/</u>)				
2	NPTEL (<u>https://nptel.ac.in/</u>)				
3	e-PATHSHALA (<u>https://epathshala.nic.in/</u>)				
4	DIKSHA (<u>https://diksha.gov.in/</u>)				

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				ks in %	, 0	R : Remembering; U : Understanding; A : Applying;
R U A N E C		С	N: Analysing; E: Evaluating; C: Creating			
20	20	20	10	10	20	

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage				
CO-1	CO-1 Learn Mendelian Genetics, Mendel's law of segregation, Independent assortment, pedigree					
CO-2	Will get knowledge of Gene interaction at different level, dominant and recessive gene.	25				
CO-3	Acquire the knowledge of sex determination in mammals, plants and animals, structure of X and Y Chromosomes.	25				
CO-4	Develop concept of chromosomal aberrations, Hardy Weinberg law, and evolutionary genetics	25				

Curriculum Revision:				
Version:	1.0			
Drafted on (Month-Year):	May 2023			
Last Reviewed on (Month-Year):	June 2023			
Next Review on (Month-Year):	April 2024			

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	II
Course Code:	To be Given by University
Course Title:	Chemistry-II
Course Group:	Generic Elective

Course Objectives:

The objectives of this course are to enable students.....

- a). To educate the students to develop the knowledge of the basics of quantitative analysis.
- b). Understanding of the standardization and student can apply theoretical knowledge to prepare solutions and basic chemical analysis methods.
- c). Student will understand clearly reaction kinetics and thermodynamic parameters of reaction and their application in biological system.

Teaching & Examination Scheme:

Contact hours per week		Course	Course Examination Marks (Maximum / Pa				sing)	
Lastura	Tutorial	Practical	Credits	The	eory	Prac	ctical	Total
Lecture	Tutorial	Practical		Internal	External	Internal	External	Total
3		2	4	50/18	50/17	25/9	25/9	150/53

Detailed Syllabus:

Sr.

Contents

1 General Introduction of analytical chemistry

Introduction, Qualitative and Quantitative analysis, Types of titrations. Requirements for titrimetric analysis. Concentration systems: molarity, formality, normality, wt%, ppm, milliequalence and millimoles-problems. Primary and Secondary standards, criteria for primary standards. Preparation of standard solutions, standardization of solutions. Limitation of volumetric analysis, endpoint and equivalence point.

Introduction to Instrumental and Chemical Methods of analysis, Applications of Chemical Analytical Chemistry, Sampling of Solid, Liquid and Gas, Stages of Analysis, Interferences, Selection of Methods, limitations of Analytical Methods.

2 Thermodynamics

Terminology of thermodynamics, First law of thermodynamics, internal energy, enthalpy of a system, heat capacity, spontaneous process, Second law of thermodynamics, concept of entropy, entropy of mixing, standard entropies, criteria for reversible and irreversible process, Gibbs-Helmholtz equation, Third law of thermodynamics, determination of absolute entropies of elements and compounds. Applications of first and second law of thermodynamics in living cells.

3 Chemical Kinetics

Introduction, Rate of reaction, Rate constant, Half life time, Determination of Half life time of reaction, Order of reaction Derivation of First law, second order rate reaction constant for (a=b) and (a \neq b). Derivation of third order. Mathematical problems. Catalysis characteristics of catalysis, Types of catalysis, homogeneous and heterogeneous catalysis, enzymecatalyzed reaction and derivation mechanism.

4 Physical properties of liquids

Surface tension: surface energy, factors affecting surface tension, interfacial tension, surface active agents, measurements of surface tensions.

Viscosity: units of viscosity, factors affecting viscosity, measurement of viscosity, application of viscometer, significance of viscosity in biological system.

11

11

Hours

12

11

List of Practicals / Tutorials:

- 1 Preparation of normal/molar solutions of acids and bases.
- 2 Preparation and standardization of primary and secondary standard solution.
- 3 Volumetric analysis of Weak Acid/ Strong Base.
- 4 To determine the amount of carbonate and bicarbonate in a given mixture by titrating it against sulphuric acid/ hydrochloric acid.
- 5 To determine the concentration of a solution for the given liquid by determination of surface-tension of a liquid by drop-volume method at various concentration.

- 6 To determine the viscosity of the given liquid with the help of Ostwald's viscometer.
- 7 To determine the percentage composition of the given solution by Ostwald's viscometer.
- 8 To determine the molecular weight of given polymer using Ostwald's viscometer.
- 9 Determination of Pka value of amino acid (glycine).
- 10 Potentiometric titration of Acid / Base.

Reference Books:

- **1** Quantitative analysis by R. A Day, Jr. & A. L. Underwood 6th Edition, Printice Hall of India Private Limited New Delhi. 2005. ISBN: 61-203-0793-3, 9788120307933.
- **2** Basic concept of Analytical Chemistry by S. M. Khopkar, New age International Publishers, 2004. ISBN 81-224-2092-3.
- **3** Vogel's Text book of Quantitative Chemical Analysis by J. Mendhan, R. C. Denney, M. Thomas, B. Sivasankar. 6th Ed. Pearson 2009. ISBN: 978-81-317-2325-8.
- **4** Biophysical chemistry, Principles and Techniques by Upadhyay, Upadhyay and Nath, Himalaya Publishing House, 2019. ISBN978-98-5142-227-3
- **5** Principles of Physical chemistry by B. R. Puri, L. R. Sharma and M. S. Pathania, 41th Ed. Vishal Publishing Co. 2012. ISBN: 81-88646-00-8
- **6** Lehninger's principles of biochemistry by David Nelson and Michel Cox. 5th Ed. W. H. Freeman Company, New York. 2005. ISBN: 978-0-23022699-9.
- 7 An advance course in practical Chemistry by Ghoshal, Mahapatra, Nad. New central book agency, Kolkata, 2004. ISBN: 81-7381-302-7.

Supplementary learning Material:

- 1 <u>https://camtools.cam.ac.uk/access/content/group/6041b37a-7fa4-4a47-808b-b20db3a36122/Module%202/Practice%20Questions/mod2/index.htm</u>
- 2 SWAYAM (<u>https://swayam.gov.in/</u>)
- 3 NPTEL (<u>https://nptel.ac.in/</u>)
- 4 e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
- 5 DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	С	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr. CO-1	Course Outcome Statements Preparations of solution and to learn concentration units.	%weightage 25
CO-2	To understand some of the basics of analytical chemistry.	25
CO-3	To learn fundamentals of thermodynamic chemistry and chemical kinetics.	25
CO-4	Develop concept of physical properties of solutions.	25

Curriculum Revision:

Version:	1.0
Drafted on (Month-Year):	May 2023
Last Reviewed on (Month-Year):	June 2023
Next Review on (Month-Year):	April 2024

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	II
Course Code:	To be Given by University
Course Title:	Environmental Studies
Course Group:	Ability Enhancement Course

Course Objectives:

The objectives of this course are to enable students to...

- a.) To develop clear understanding of various aspects of environment this includes ecosystem, biodiversity, and conservation of biodiversity, Indian hotspots, endangered flora and fauna of India.
- b.) It also develops an attitude of concern for the environment and acquiring skills to help the concerned individuals in identifying and solving environmental problems.

Teaching & Examination Scheme:

Conta	ct hours pe	er week	Course Examination Marks (Maximum / Pa				mum / Pas	sing)
Locturo	Tutorial	Practical	Credits	Theory		Practical		Total
Lecture	Tutorial			Internal	External	Internal	External	Total
2			2	50/18	50/17			100/35

Detailed Syllabus:

Sr.	Contents	Hours	
1	Introduction to environmental studies:	02	
	Multidisciplinary nature of environmental studies; components of environment:		
	atmosphere, hydrosphere, lithosphere, and biosphere.		
	 Scope and importance; Concept of sustainability and sustainable 		
	development; Brief history of environmentalism.		

2	Natural Resources:	10
	Land resources: Minerals, soil, agricultural crops, natural forest products,	
	medicinal plants, and forest-based industries and livelihoods; Land cover, land use	
	change, land degradation, soil erosion, and desertification; Causes of deforestation;	
	Impacts of mining and dam building on environment, forests, biodiversity, and	
	tribal communities.	
	Water resources: Natural and man-made sources; Uses of water; Over exploitation	
	of surface and ground water resources; Floods, droughts, and international & interstate conflicts over water.	
	Energy resources: Renewable and non-renewable energy sources; Use of alternate	
	energy sources; Growing energy needs; Energy contents of coal, petroleum, natural	
	gas and biogas; Agro residues as a biomass energy source.	
	• Case studies: Contemporary Indian issues related to mining, dams, forests,	
	energy, etc (e.g., National Solar Mission, Cauvery River water conflict, Sardar	
	Sarovar dam, Chipko movement, Appiko movement, Tarun Bharat Sangh,	
	etc)	
3	Global Environmental Issues and Policies	10
	Causes of Climate change, Global warming, Ozone layer depletion, and Acid rain,	
	Impacts on human communities, biodiversity, global economy, and agriculture.	
	International agreements and programmes: Earth Summit, UNFCCC, Montreal and Kyoto protocols, Convention on Biological Diversity (CBD), Ramsar convention, The	
	Chemical Weapons Convention (CWC), UNEP, CITES, etc.	
	Sustainable Development Goals: India's National Action Plan on Climate Change	
	and its major missions.	
	Environment legislation in India: Wildlife Protection Act, 1972; Water (Prevention	
	and Control of Pollution) Act, 1974; Forest (Conservation) Act 1980; Air	
	(Prevention & Control of Pollution) Act, 1981; Environment Protection Act, 1986;	
	Scheduled Tribes and other Traditional Forest Dwellers (Recognition of Forest	
	Rights) Act, 2006.	
4	Human Communities and the Environment:	08
	Human population growth: Impacts on environment, human health, and welfare; Carbon footprint.	
	Resettlement and rehabilitation of developmental projects affected persons and	
	communities, relevant case studies.	
	Environmental movements: Chipko movement, Appiko movement, Silent valley	
	movement, Bishnois of Rajasthan, Narmada Bachao Andolan, etc.	
	Environmental justice: National Green Tribunal and its importance.	
	Environmental philosophy: Environmental ethics; Role of various religions and	
	cultural practices in environmental conservation.	
	Environmental communication and public awareness: case studies (e.g., CNG	
	vehicles in Delhi, Swachh Bharat Abhiyan, National Environment Awareness	
	Campaign (NEAC), National Green Corps (NGC) "Eco-club" programme, etc.)	

Reference Books:

1	Ecology - Principles and Applications by J.L. Chapman & M.J. Reiss. (2008) (2nd Ed.) Cambridge
	University Press, U.K. (ISBN: 978-0-521-68920-5)
2	Ecology and Environment by P.D. Sharma. (2010). (10th Ed.) Rastogi Publications, Meerut (India).
	(ISBN: 978-81-7133-905-1)
3	Elements of Ecology by Thomas Smith & Robert Smith. (2007) (6th Ed.) Dorling Kindersley Press.
	(South Asia). (ISBN: 81-317-1557-4)
4	Fundamentals of Ecology by Eugene Odum& Gray Barrett. (2009) (5th Ed.) Cengage
	Learning & Nelson Education Press. (ISBN: 978-81-315-0020-0)
5	Groom, Martha J., Gary K. Meffe, and Carl Ronald Carroll. Principles of Conservation Biology.
	Sunderland: Sinauer Associates, 2006.
6	Raven, P.H., Hassenzahl, D.M. & Berg, L.R. 2012. Environment. 8th edition. John Wiley & Sons.
7	Rosencranz, A., Divan, S., & Noble, M. L. 2001. Environmental law and policy in India.
	Tripathi 1992.
8	Singh, J.S., Singh, S.P. and Gupta, S.R. 2014. Ecology, Environmental Science and
	Conservation. S. Chand Publishing, New Delhi.
·	

Sup	plementary learning Material:
1	SWAYAM (<u>https://swayam.gov.in/</u>)
2	NPTEL (<u>https://nptel.ac.in/</u>)
3	e-PATHSHALA (<u>https://epathshala.nic.in/</u>)
4	DIKSHA (<u>https://diksha.gov.in/</u>)

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Field trip / Industrial visit / sample collection/ data collection etc
- 4. Case study
- 5. Group Discussion
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %					n %	R : Remembering; U : Understanding; A : Applying;
R	U	Α	Ν	Ε	C	N: Analyzing; E: Evaluating; C: Creating
50	20	10	10	5	5	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students will gain of in-depth knowledge on natural processes and	10
	resources that sustain life and govern economy.	
CO-2	Students will acquire critical thinking for environmental protection, and sustainable development.	30

CO-3	Students will develop attitude for active participation in solving current	30
	environmental problems and preventing the future ones.	
CO-4	Students will adopt sustainability as a practice in life, society, and	30
	industry.	

Curriculum Revision:		
Version:	1.0	
Drafted on (Month-Year):	May 2023	
Last Reviewed on (Month-Year):	June 2023	
Next Review on (Month-Year):	April 2024	

Effective from Academic Batch: 2023-24

Programme:	B.Sc. Life Sciences
Semester:	II
Course Code:	To be given by university
Course Title:	Organic Farming
Course Group:	Skill Enhancement Course (SEC)

Course Objectives:

The objectives of this course are to enable students to...

- a) Learn significance of the holistic concept organic farming
- **b)** Acquaint students with cultural production practices typically employed in organic farming.
- **c)** Examine challenges and trends in the production, processing, and marketing of organic farm products.
- **d)** Introduce students to the large body of literature relating to organic agriculture practices.

Teaching & Examination Scheme:

Conta	Contact hours per week		Course	Examination Marks (Maximum / Passing)				
Locturo	Tutorial	Dractical	Credits	The	eory	J/V	/P*	Total
Lecture	re Tutorial Practical		Internal	External	Internal	External	TULAI	
2			2	50/18	50/17			100/35

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	History of alternative agricultural Development, Effects of Green revolution	15
	organic farming. Need, concepts, definition, characteristics, and components of	
	organic farming. Relevance to modern agriculture, different eco-friendly farming	
	system, biological farming Natural farming, biodynamic farming, permaculture,	
	regenerative agriculture, and Zero Budget farming. Organic nutrient sources and	
	their fortification, organic manures, methods of composting. Green manures: bio	
	fertiliser types, methods of application, benefits and limitations.	

2	Nutrient use in organic farming-scope and limitations. Nutrient management in	15
	organic farming. Organic ecosystem and their concepts. Choice of crops and	
	varieties in organic farming, crop rotations, need and benefits, multiple cropping.	
	Fundamentals of insect, disease and weed management under organic mode of	
	production-cultural-biological methods-nonchemical pest & disease	
	management.	
	Initiatives taken by the central and state governments, NGOs, and other	
	organizations for promotion of organic agriculture in India	

Reference Books:

- **1** Tiwari, V.N., Gupta, D.K., Maloo, S.R and Somani, L.L. 2010. Natural, organic, biological, ecological, and biodynamic farming. Agrotech Publishing Academy, Udaipur. 420p.
- **2** Mukund Joshi and Prabhakarasetty, T.K. 2006. Sustainability through organic farming. Kalyani publishers, New Delhi. 349p.
- **3** Balasubramanian, R., Balakishnan, K and Siva Subramanian, K. 2013. Principles and practices of organic farming. Satish Serial Publishing House. 453p.
- **4** Arun K. Sharma. 2002. A Handbook of organic farming. Agrobios, India. 627p.

Sup	Supplementary learning Material:		
1	SWAYAM (<u>https://swayam.gov.in/</u>)		
2	NPTEL (<u>https://nptel.ac.in/</u>)		
3	e-PATHSHALA (<u>https://epathshala.nic.in/</u>)		
4	DIKSHA (<u>https://diksha.gov.in/</u>)		

Pedagogy:

- 1. Audio -visual aids, power point presentation, videos, animation, models etc.
- 2. Continuous assessment based on quiz, assignment, seminar.
- 3. Industrial visit
- 4. Laboratory experiments
- 5. Demonstration
- 6. Student feed back
- 7. Peer led learning

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

<u> </u>	01110010					
Distribution of Theory Marks in %					R : Remembering; U : Understanding; A :	
R	U	Α	Ν	E	C	Applying;
20	20	20	10	10	20	N: Analysing; E: Evaluating; C: Creating

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students will get knowledge of the historical, biological, and ecological	50
	basis for organic farming including crop and livestock management.	

CO-2	Students will develop critical thinking with a systems approach to	50
	agriculture using case studies as working examples of farming systems.	

Curriculum Revision:		
Version:	1.0	
Drafted on (Month-Year):	May 2023	
Last Reviewed on (Month-Year):	June 2023	
Next Review on (Month-Year):	April 2024	